Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 72, Issue 5

Issues

Why we age – a new evolutionary view

Igor Peregrim
  • Corresponding author
  • Faculty of Medicine, Department of Medical Physiology, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, SK-04011, Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-30 | DOI: https://doi.org/10.1515/biolog-2017-0064

Abstract

This article introduces a new evolutionary theory of aging, which suggests that aging is the result of imperfections in cell turnover in organisms. Some of the simplest animals demonstrate the strongest ability of cell renewal and therefore, according to this theory, their aging often seems to be negligible. Evolutionarily related organisms (e.g. mammals) share similar abilities in tissue cell turnover but they differ in the rates at which the process is performed. These rate differences are more or less forced by the speed of irreversible damage (e.g. lipofuscin) increase in their cells. This speed is the result of an evolutionary trade-off of “function vs. resistance to irreversible damage” in their cell molecules. The article also offers an explanation of the differences in basal metabolic rate between different species. Put simply, while a trade-off in irreversible damage plays a role in aging, the trade-off in reversible damage plays a role in basal metabolic rate.

Key words: aging; evolution; cell turnover; basal metabolic rate

References

  • Ahmed A.S.I., Sheng M.H., Wasnik S., Baylink D.J. & Lau K.H.W. 2017. Effect of aging on stem cells. World J. Exp. Med. 7: 1–10.CrossrefGoogle Scholar

  • Aledo J.C., Li Y., De Magalhăes J.P., Ruíz-Camacho M. & Pérez-Claros J.A. 2011. Mitochondrially encoded methionine is inversely related to longevity in mammals. Aging Cell 10: 198–207.CrossrefGoogle Scholar

  • Andziak B., O’Connor T.P. & Buffenstein R. 2005. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech. Ageing Dev. 126: 1206–1212.CrossrefGoogle Scholar

  • Beausejour C.M. & Campisi J. 2006. Ageing: balancing regeneration and cancer. Nature 443: 404–405.Google Scholar

  • Bermejo-Pareja F., Benito-León J., Vega S., Medrano M.J., Román G.C. & Neurological Disorders in Central Spain (NEDICES) Study Group. 2008. Incidence and subtypes of dementia in three elderly populations of central Spain. J. Neurol. Sci. 264: 63–72.Google Scholar

  • Bernerd F. & Asselineau D. 1998. UVA exposure of human skin reconstructed in vitro induces apoptosis of dermal fibroblasts: subsequent connective tissue repair and implications in photoaging. Cell Death Differ. 5: 792–802.CrossrefGoogle Scholar

  • Bjelakovic G., Nikolova D. & Gluud C. 2014. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Metab. Care 17: 40–44.Google Scholar

  • Boettcher M., Machann J., Stefan N., Thamer C., Häring H.U., Claussen C.D., Fritsche A. & Schick F. 2009. Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity. J. Magn. Reson. Imaging 29: 1340–1345.Google Scholar

  • Boldrin L., Zammit P.S. & Morgan J.E. 2015. Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res. 14: 20–29.CrossrefGoogle Scholar

  • Brizzee K.R. & Johnson F.A. 1970. Depth distribution of lipofuscin pigment in cerebral cortex of albino rat. Acta Neuropathol. 16: 205–219.CrossrefGoogle Scholar

  • Brown G.C. & Borutaite V. 2012. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12: 1–4.CrossrefGoogle Scholar

  • Brunauer R. & Kennedy B.K. 2015. Progeria accelerates adult stem cell aging. Science 348: 1093–1094.Google Scholar

  • Buffenstein R. & Edrey Y.H. 2009. Slow aging: insights from an exceptionally long-lived rodent, the naked mole-rat, pp. 141–156. In: Sell C., Lorenzini A. & Brown-Borg H.M. (eds), Life-Span Extension: Single-Cell Organisms to Man. Humana Press, NY, USA.Google Scholar

  • Cabreiro F., Ackerman D., Doonan R., Araiz C., Back P., Papp D., Braeckman B.P. & Gems D. 2011. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic. Biol. Med. 51: 1575–1582.Google Scholar

  • Cameron H.A. & Dayer A.G. 2008. New interneurons in the adult neocortex: small, sparse, but significant? Biol. Psychiatry 63: 650–655.Google Scholar

  • Chowdhury P.K., Halder M., Choudhury P.K., Kraus G.A., Desai M.J., Armstrong D.W., Casey T.A., Rasmussen M.A. & Petrich J.W. 2004. Generation of fluorescent adducts of malondialdehyde and amino acids: toward an understanding of lipofuscin. Photochem. Photobiol. 79: 21–25.CrossrefGoogle Scholar

  • Coclet J., Foureau F., Ketelbant P., Galand P. & Dumont J.E. 1989. Cell population kinetics in dog and human adult thyroid. Clin. Endocrinol. 31: 655–666.CrossrefGoogle Scholar

  • Coffman J.A., Rieger S., Rogers A.N., Updike D.L. & Yin V.P. 2016. Comparative biology of tissue repair, regeneration and aging. npj Regener. Med. 1: 16003.Google Scholar

  • Colman R.J., Beasley T.M., Kemnitz J.W., Johnson S.C., Weindruch R. & Anderson R.M. 2014. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 5: 3557.CrossrefGoogle Scholar

  • Conti B., Sanchez-Alavez M., Winsky-Sommerer R., Morale M.C., Lucero J., Brownell S., Fabre V., Huitron-Resendiz S., Henriksen S., Zorrilla E.P., de Lecea L. & Bartfai T. 2006. Transgenic mice with a reduced core body temperature have an increased life span. Science 314: 825–828.Google Scholar

  • Coschigano K.T., Clemmons D., Bellush L.L. & Kopchick J.J. 2000. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141: 2608–2613.Google Scholar

  • David C.N. 2012. Interstitial stem cells in Hydra: multipotency and decision-making. Int. J. Dev. Biol. 56: 489–497.CrossrefGoogle Scholar

  • Dayer A.G., Cleaver K.M., Abouantoun T. & Cameron H.A. 2005. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168: 415–427.CrossrefGoogle Scholar

  • De Boer J., Andressoo J.O., de Wit J., Huijmans J., Beems R.B., van Steeg H., Weeda G., van der Horst G.T., van Leeuwen W., Themmen A.P., Meradji M. & Hoeijmakers J.H. 2002. Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276–1279.Google Scholar

  • De Magalhăes J.P., Costa J. & Church G.M. 2007. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J. Gerontol. A Biol. Sci. Med. Sci. 62: 149–160.CrossrefGoogle Scholar

  • De Ruyck K., De Boevre M., Huybrechts I. & De Saeger S. 2015. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: short review. Mutat. Res. Rev. Mutat. Res. 766: 32–41.Google Scholar

  • den Dunnen W.F., Brouwer W.H., Bijlard E., Kamphuis J., van Linschoten K., Eggens-Meijer E. & Holstege G. 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging 29: 1127–1132.Google Scholar

  • Di Carlo A., Baldereschi M., Amaducci L., Lepore V., Bracco L., Maggi S., Bonaiuto S., Perissinotto E., Scarlato G., Farchi G. & Inzitari D. 2002. Incidence of dementia, Alzheimer’s disease, and vascular dementia in Italy. The ILSA Study. J. Am. Geriatr. Soc. 50: 41–48.CrossrefGoogle Scholar

  • Dunn S.E., Kari F.W., French J., Leininger J.R., Travlos G., Wilson R. & Barrett J.C. 1997. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 57: 4667–4672.Google Scholar

  • Edrey Y.H. & Salmon A.B. 2014. Revisiting an age-old question regarding oxidative stress. Free Radic. Biol. Med. 71: 368–378.Google Scholar

  • Edrey Y.H., Hanes M., Pinto M., Mele J. & Buffenstein R. 2011. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J. 52: 41–53.CrossrefGoogle Scholar

  • Episkopou V., Maeda S., Nishiguchi S., Shimada K., Gaitanaris G.A., Gottesman M.E. & Robertson E.J. 1993. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc. Natl. Acad. Sci. USA 90: 2375–2379.Google Scholar

  • Espada J., Varela I., Flores I., Ugalde A.P., Cadińanos J., Pendás A.M., Stewart C.L, Tryggvason K., Blasco M.A., Freije J.M.P & López-Otín C. 2008. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 181: 27–35.Google Scholar

  • Evans W.J. & Lexell J. 1995. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 50: 11–16.CrossrefGoogle Scholar

  • Frazier M.R., Huey R.B. & Berrigan D. 2006. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. Am. Nat. 168: 512–520.CrossrefGoogle Scholar

  • Gallagher D., Kuznia P., Heshka S., Albu J., Heymsfield S.B., Goodpaster B., Visser M. & Harris T.B. 2005. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am. J. Clin. Nutr. 81: 903–910.Google Scholar

  • Galván I., Naudí A., Erritz⊘e J., M⊘ller A.P., Barja G. & Pamplona R. 2015. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 69: 2776–2784.Google Scholar

  • García-Cao I., García-Cao M., Martín-Caballero J., Criado L.M., Klatt P., Flores J.M., Weill J.C., Blasco M.A. & Serrano M. 2002. ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21: 6225–6235.Google Scholar

  • Gavrilov L.A. & Gavrilova N.S. 2002. Evolutionary theories of aging and longevity. Sci. World J. 2: 339–356.CrossrefGoogle Scholar

  • Godwin J.W. & Rosenthal N. 2014. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation 87: 66–75.CrossrefGoogle Scholar

  • Gómez A., Sánchez-Roman I., Gomez J., Cruces J., Mate I., Lopez-Torres M., Naudi A., Portero-Otin M., Pamplona R., De la Fuente M. & Barja G. 2014. Lifelong treatment with atenolol decreases membrane fatty acid unsaturation and oxidative stress in heart and skeletal muscle mitochondria and improves immunity and behavior, without changing mice longevity. Aging Cell 13: 551–560.CrossrefGoogle Scholar

  • Gould E., Vail N., Wagers M. & Gross C.G. 2001. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc. Natl. Acad. Sci. USA 98: 10910–10917.Google Scholar

  • Gregg S.Q., Gutiérrez V., Rasile Robinson A., Woodell T., Nakao A., Ross M.A., Michalopoulos G.K., Rigatti L., Rothermel C.E., Kamileri I., Garinis G., Stolz D.B. & Niedernhofer L.J. 2012. A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology 55: 609–621.CrossrefGoogle Scholar

  • Grimes K.M., Lindsey M.L., Gelfond J.A. & Buffenstein R. 2012. Getting to the heart of the matter: age-related changes in diastolic heart function in the longest-lived rodent, the naked mole rat. J. Gerontol. A Biol. Sci. Med. Sci. 67: 384–394.CrossrefGoogle Scholar

  • Hasek B.E., Stewart L.K., Henagan T.M., Boudreau A., Lenard N.R., Black C., Shin J., Huypens P., Malloy V.L., Plaisance E.P., Krajcik R.A., Orentreich N. & Gettys T.W. 2010. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299: R728–R739.Google Scholar

  • Healy K. 2015. Eusociality but not fossoriality drives longevity in small mammals. Proc. Biol. Sci. 282: 20142917.Google Scholar

  • Healy K., Guillerme T., Finlay S., Kane A., Kelly S.B., McClean D., Kelly D.J., Donohue I., Jackson A.L. & Cooper N. 2014. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281: 20140298.Google Scholar

  • Herranz D., Muńoz-Martín M., Cańamero M., Mulero F., Martinez-Pastor B., Fernandez-Capetillo O. & Serrano M. 2010. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1: 3.CrossrefGoogle Scholar

  • Herrup K. 2015. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18: 794–799.CrossrefGoogle Scholar

  • Hiona A., Sanz A., Kujoth G.C., Pamplona R., Seo A.Y., Hofer T., Someya S., Miyakawa T., Nakayama C., Samhan-Arias A.K., Servais S., Barger J.L., Portero-Otín M., Tanokura M., Prolla T.A. & Leeuwenburgh C. 2010. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PloS One 5: e11468.Google Scholar

  • Hulbert A.J., Kelly M.A. & Abbott S.K. 2014. Polyunsaturated fats, membrane lipids and animal longevity. J. Comp. Physiol. B 184: 149–166.Google Scholar

  • Hulbert A.J., Pamplona R., Buffenstein R. & Buttemer W.A. 2007. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87: 1175–1213.CrossrefGoogle Scholar

  • James R.S. 2013. A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. J. Comp. Physiol. B 183: 723–733.Google Scholar

  • Jennekens F.G.I, Ten Kate L.P., De Visser M. & Wintzen A.R. 1991. Diagnostic criteria for Duchenne and Becker muscular dystrophy and myotonic dystrophy. Neuromuscul. Disord. 1: 389–391.Google Scholar

  • Jobson R.W., Nabholz B. & Galtier N. 2010. An evolutionary genome scan for longevity-related natural selection in mammals. Mol. Biol. Evol. 27: 840–847.CrossrefGoogle Scholar

  • Jochum K.P., Wang X., Vennemann T.W., Sinha B. & Müller W.E. 2012. Siliceous deep-sea sponge Monorhaphis chuni: a potential paleoclimate archive in ancient animals. Chem. Geol. 300: 143–151.Google Scholar

  • Jones O.R., Scheuerlein A., Salguero-Gómez R., Camarda C.G., Schaible R., Casper B.B., Dahlgren J.P., Ehrlén J., García M.B., Menges E.S., Quintana-Ascencio P.F., Caswell H., Baudisch A. & Quintana-Ascencio P.F. 2014. Diversity of ageing across the tree of life. Nature 505: 169–173.Google Scholar

  • Jové M., Naudí A., Ramírez-Núńez O., Portero-Otín M., Selman C., Withers D.J. & Pamplona R. 2014. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 13: 828–837.CrossrefGoogle Scholar

  • Keil G., Cummings E. & de Magalhăes J.P. 2015. Being cool: how body temperature influences ageing and longevity. Biogerontology 16: 383–397.CrossrefGoogle Scholar

  • Khokhlov A.N. 2013. Impairment of regeneration in aging: appropriateness or stochastics? Biogerontology 14: 703–708.CrossrefGoogle Scholar

  • Kishi S., Uchiyama J., Baughman A.M., Goto T., Lin M.C. & Tsai S.B. 2003. The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp. Gerontol. 38: 777-786.CrossrefGoogle Scholar

  • Kitazoe Y., Kishino H., Hasegawa M., Matsui A., Lane N. & Tanaka M. 2011. Stability of mitochondrial membrane proteins in terrestrial vertebrates predicts aerobic capacity and longevity. Genome Biol. Evol. 3: 1233-1244.CrossrefGoogle Scholar

  • Kluger M.J., Kozak W., Conn C.A., Leon L.R. & Soszynski D. 1998. Role of fever in disease. Ann. N. Y. Acad. Sci. 856: 224–233.Google Scholar

  • Kumar D.K.V., Choi S.H., Washicosky K.J., Eimer W.A., Tucker S., Ghofrani J., Lefkowitz A., McColl G., Goldstein L.E., Tanzi R.E. & Moir, R.D. 2016. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 8: 340ra72.CrossrefGoogle Scholar

  • Kuriyan A.E., Albini T.A., Townsend J.H., Rodriguez M., Pandya H.K., Leonard R.E., Parrott M.B., Rosenfeld P.J., Flynn H.W. Jr & Goldberg J.L. 2017. Vision loss after intravitreal injection of autologous “stem cells” for AMD. New England J. Med. 376: 1047–1053.Google Scholar

  • Laron Z. 2008. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency. Hormones (Athens) 7: 24–27.Google Scholar

  • Laron Z., Kauli R., Lapkina L. & Werner H. 2016. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat. Res. 772: 123–133.Google Scholar

  • Leslie M. 2008. Aging. Searching for the secrets of the super old. Science 321: 1764–1765.Google Scholar

  • López-Otín C., Blasco M.A., Partridge L., Serrano M. & Kroemer G. 2013. The hallmarks of aging. Cell 153: 1194–1217.Google Scholar

  • Lv M., Zhu X., Wang H., Wang F. & Guan W. 2014. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PloS One 9: e115147.Google Scholar

  • Mariadassou M. & Pellay F.X. 2014. Identification of amino acids in mitochondrially encoded proteins that correlate with lifespan. Exp. Gerontol. 56: 53–58.CrossrefGoogle Scholar

  • Martínez D.E. & Bridge D. 2012. Hydra, the everlasting embryo, confronts aging. Int. J. Dev. Biol. 56: 479–487.CrossrefGoogle Scholar

  • Marzetti E., Carter C.S., Wohlgemuth S.E., Lees H.A., Giovannini S., Anderson B., Quinn L.S. & Leeuwenburgh C. 2009. Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction. Mech. Ageing Dev. 130: 272–280.CrossrefGoogle Scholar

  • Masoro E.J. 2005. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126: 913–922.CrossrefGoogle Scholar

  • Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.H., Herbert R.L., Longo D.L., Allison D.B., Young J.E., Bryant M., Barnard D., Ward W.F., Qi W., Ingram D.K. & de Cabo R. 2012. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489: 318–321.Google Scholar

  • Mirzaei H., Suarez J.A. & Longo V.D. 2014. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol. Metab. 25: 558–566.Google Scholar

  • Mizutani T. & Shimada H. 1992. Neuropathological background of twenty-seven centenarian brains. J. Neurol. Sci. 108: 168–177.CrossrefGoogle Scholar

  • Mora M. 1989. Fibrous-adipose replacement in skeletal muscle biopsy. Eur. Heart J. 10: 103–104.CrossrefGoogle Scholar

  • Nowotny K., Jung T., Grune T. & Höhn A. 2014. Accumulation of modified proteins and aggregate formation in aging. Exp. Gerontol. 57: 122–131.CrossrefGoogle Scholar

  • Oh J., Lee Y.D. & Wagers A.J. 2014. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20: 870–880.CrossrefGoogle Scholar

  • Pérez V.I., Bokov A., Van Remmen H., Mele J., Ran Q., Ikeno Y. & Richardson A. 2009. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790: 1005–1014.Google Scholar

  • Pinot M., Vanni S., Pagnotta S., Lacas-Gervais S., Payet L.A., Ferreira T., Gautier R., Goud B., Antonny B. & Barelli H. 2014. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345: 693–697.Google Scholar

  • Randall A.S., Liu C.H., Chu B., Zhang Q., Dongre S.A., Juusola M., Franze K., Wakelam M.J.O. & Hardie R.C. 2015. Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids. J. Neurosci. 35: 2731–2746.CrossrefGoogle Scholar

  • Raya Á., Consiglio A., Kawakami Y., Rodriguez-Esteban C. & Izpisúa-Belmonte J.C. 2004. The zebrafish as a model of heart regeneration. Cloning Stem Cells 6: 345–351.CrossrefGoogle Scholar

  • Rigamonti A., Brennand K., Lau F. & Cowan C.A. 2011. Rapid cellular turnover in adipose tissue. PLoS One 6: e17637.Google Scholar

  • Roark E.B., Guilderson T.P., Dunbar R.B., Fallon S.J. & Mucciarone D.A. 2009. Extreme longevity in proteinaceous deep-sea corals. Proc. Natl. Acad. Sci. USA 106: 5204–5208.Google Scholar

  • Rucklidge G.J., Milne G., McGaw B.A., Milne E. & Robins S.P. 1992. Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochim. Biophys. Acta 1156: 57–61.Google Scholar

  • Samorajski T., Ordy J.M. & Rady-Reimer P. 1968. Lipofuscin pigment accumulationin the nervous system of aging mice. Anat. Rec. 160: 555–573.Google Scholar

  • Schoenhofen E.A., Wyszynski D.F., Andersen S., Pennington J., Young R., Terry D.F., Perls T.T. 2006. Characteristics of 32 supercentenarians. J. Am. Geriatr. Soc. 54: 1237–1240.CrossrefGoogle Scholar

  • Seim I., Fang X., Xiong Z., Lobanov A.V., Huang Z., Ma S., Feng Y., Turanov A.A., Zhu Y., Lenz T.L., Gerashchenko M.V., Fan D., Yim S.H., Yao X., Jordan D., Xiong Y., Ma Y., Lyapunov A.N., Chen G., Kulakova O.I., Sun Y., Lee S., Bronson R.T., Moskalev A.A., Sunyaev S.R., Zhang G., Krogh A., Wang J. & Gladyshev V.N. 2013. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 4: 2212.CrossrefGoogle Scholar

  • Selman C., McLaren J.S., Meyer C., Duncan J.S., Redman P., Collins A.R., Duthie G.G. & Speakman J.R. 2006. Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes. Mech. Ageing Dev. 127: 897–904.CrossrefGoogle Scholar

  • Sharpless N.E. & DePinho R.A. 2007. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 8: 703–713.CrossrefGoogle Scholar

  • Sheehy M.R.J. 2002. Role of environmental temperature in aging and longevity: insights from neurolipofuscin. Arch. Gerontol. Geriatr. 34: 287–310.CrossrefGoogle Scholar

  • Shi W., Fang Z., Li L. & Luo L. 2015. Using zebrafish as the model organism to understand organ regeneration. Sci. China Life Sci. 58: 343–351.CrossrefGoogle Scholar

  • Sinclair D.A. 2005. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126: 987–1002.CrossrefGoogle Scholar

  • Speakman J.R. & Garratt M. 2014. Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. Bioessays 36: 93–106.CrossrefGoogle Scholar

  • Suh Y., Atzmon G., Cho M.O., Hwang D., Liu B., Leahy D.J., Barzilai N. & Cohen P. 2008. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl. Acad. Sci. USA 105: 3438–3442.CrossrefGoogle Scholar

  • Taylor K.R., Milone N.A. & Rodriguez C.E. 2017. Four cases of spontaneous neoplasia in the naked mole-rat (Heterocephalus glaber), a putative cancer-resistant species. J. Gerontol. A Biol. Sci. Med. Sci. 72: 38-43.CrossrefGoogle Scholar

  • Turner L. & Knoepfler P. 2016. Selling stem cells in the USA: assessing the direct-to-consumer industry. Cell Stem Cell 19: 154–157.CrossrefGoogle Scholar

  • Tyner S.D., Venkatachalam S., Choi J., Jones S., Ghebranious N., Igelmann H., Lu X., Soron G., Cooper B., Brayton C., Park S.H., Thompson T., Karsenty G., Bradley A. & Donehower L.A. 2002. p53 mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53.Google Scholar

  • Valenzano D.R., Terzibasi E., Cattaneo A., Domenici L. & Cellerino A. 2006. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell. 5: 275-278.CrossrefGoogle Scholar

  • Vásquez V., Krieg M., Lockhead D. & Goodman M.B. 2014. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep. 6: 70–80.CrossrefGoogle Scholar

  • Vermulst M., Bielas J.H., Kujoth G.C., Ladiges W.C., Rabinovitch P.S., Prolla T.A. & Loeb L.A. 2007. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39: 540–543.CrossrefGoogle Scholar

  • Verzijl N., DeGroot J., Thorpe S.R., Bank R.A., Shaw J.N., Lyons T.J., Bijlsma J.W., Lafeber F.P., Baynes J.W. & TeKoppele J.M. 2000. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275: 39027–39031.Google Scholar

  • Weidemann F., Sanchez-Nińo M.D., Politei J., Oliveira J.P., Wanner C., Warnock D.G. & Ortiz A. 2013. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J. Rare Dis. 8: 116.CrossrefGoogle Scholar

  • Wick G., Berger P., Jansen-Dürr P. & Grubeck-Loebenstein B. 2003. A Darwinian-evolutionary concept of age-related diseases. Exp. Gerontol. 38: 13–25.CrossrefGoogle Scholar

  • Wilkinson G.S. & South J.M. 2002. Life history, ecology and longevity in bats. Aging Cell. 1: 124-131.Google Scholar

  • Williams S.A. & Shattuck M.R. 2015. Ecology, longevity and naked mole-rats: confounding effects of sociality? Proc. Biol. Sci. 282: 20141664.Google Scholar

  • Zhang J., Lian Q., Zhu G., Zhou F., Sui L., Tan C., Mutalif R.A., Navasankari R., Zhang Y., Tse H.F., Stewart C.L. & Colman A. 2011. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8: 31–45.CrossrefGoogle Scholar

About the article

Received: 2016-09-01

Accepted: 2017-05-23

Published Online: 2017-05-30

Published in Print: 2017-05-24


Conflict of interest The author has no conflict of interest in this work.


Citation Information: Biologia, Volume 72, Issue 5, Pages 475–485, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0064.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in