Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 5

Issues

Dissection of the interaction between human holo-transferrin and ciprofloxacin in the presence of silver nanoparticles: spectroscopic approaches

Fatemeh Koohzad
  • Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sima Beigoli
  • Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahtab JahanShah-Talab
  • Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maryam Kamshad
  • Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reza Assaran Darban
  • Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jamshidkhan Chamani
  • Corresponding author
  • Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-30 | DOI: https://doi.org/10.1515/biolog-2017-0066

Abstract

The binding of ciprofloxacin (CIP) to human holo-transferrin (HTF) in the presence of silver nanoparticles (AgNPs) has been investigated by fluorescence quenching and circular dichroism (CD) techniques as well as resonance light scattering under physiological conditions. It was determined that the intrinsic fluorescence of HTF was quenched by CIP in the presence of AgNPs through static quenching, thus confirming that a CIP-HTF complex was formed in both the binary and ternary systems. However, the analysis of HTF fluorescence quenching in these binary and ternary systems indicated that the AgNPs were affected upon complex formation between CIP and HTF and that the binding affinity between them became more substantial when the AgNPs coexisted with the drug. Fluorescence quenching proved that HTF had one class of binding sites for CIP in both binary and ternary systems. CD spectra indicated that the secondary structure of HTF changed when increasing the CIP concentration and during the simultaneous presence of CIP and AgNPs, which led to decreased contents of α-helix and, β-sheet structures in HTF, inducing destabilization of the protein.

Key words: human holo-transferrin; ciprofloxacin; circular dichroism; fluorescence quenching; Ag nanoparticle; Förster resonance energy transfer

References

  • Anglister J. & Steinberg I. 1983. Resonance Rayleigh scattering of cyanine dyes in solution. J. Chem. Phys. 78: 5358–5368.Google Scholar

  • Breilh D., Saux M.C., Maire P., Vergnaud J.M. & Jelliffe R.W. 2001. Mixed pharmacokinetic population study and diffusion model to describe ciprofloxacin lung concentrations. Comput. Biol. Med. 31: 147–155.CrossrefGoogle Scholar

  • Cai W., Fan Y., Jiang Z. & Yao J. 2010. A highly sensitive and selective resonance scattering spectral assay for potassium ion based on aptamer and nanosilver aggregation reactions. Talanta 81: 1810–1815.CrossrefWeb of ScienceGoogle Scholar

  • Chen X. & Schluesener H. 2008. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176: 1–12.Web of ScienceGoogle Scholar

  • Chen Z., Liu G., Chen M., Xu B., Peng Y., Chen M. & Wu M. 2009. Screen anticancer drug in vitro using resonance light scattering technique. Talanta 77: 1365–1369.CrossrefWeb of ScienceGoogle Scholar

  • Choi O., Yu C.P., Fernández G.E. & Hu Z. 2010. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water. Res. 44: 6095–6103.CrossrefGoogle Scholar

  • Demchenko A., & Ladokhin A. 1988. Red-edge-excitation fluorescence spectroscopy of indole and tryptophan. Eur. Biophys. J. 15: 369–379.CrossrefGoogle Scholar

  • Ding F., Liu W., Li N., Zhang L. & Sun Y. 2010. Complex of nicosulfuron with human serum albumin: a biophysical study. J. Mol. Struct. 975: 256–264.Web of ScienceGoogle Scholar

  • Du H., Xiang J., Zhang Y. & Tang Y. 2007. A spectroscopic and molecular modeling study of sinomenine binding to transferrin. Bioorg. Med. Chem. Lett. 17: 1701–1704.CrossrefGoogle Scholar

  • Ge F., Chen C., Liu D., Han B., Xiong X. & Zhao S. 2010. Study on the interaction between the asinesin and human serum albumin by fluorescence spectroscopy. J. Lumin. 130: 168–173.Google Scholar

  • Gonçalves S., Santos N.C., Martins-Silva J. & Saldanha C. 2007. Fluorescence spectroscopy evaluation of fibrinogen-β-estradiol binding. J. Photochem. Photobiol. B Biol. 86: 170–176.CrossrefGoogle Scholar

  • Harris W.R., Cafferty A.M., Trankler K., Maxwell A. & MacGillivray R.T. 1999. Thermodynamic studies on anion binding to apotransferrin and to recombinant transferrin N-lobe half molecules. Biochim. Biophys. Acta 1430: 269–280.Google Scholar

  • He Q.Y., Mason A.B., Tam B.M., MacGillivray R.T. & Woodworth R.C. 1999. Dual role of Lys206–Lys296 interaction in human transferrin N-lobe: iron-release trigger and anionbinding site. Biochemistry 38: 9704–9711.CrossrefGoogle Scholar

  • He Y., Wang Y., Tang L., Liu H., Chen W., Zheng Z. & Zou G. 2008. Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking. J. Fluoresc. 18: 433–442.Web of ScienceCrossrefGoogle Scholar

  • Jones S.A., Bowler P.G., Walker M. & Parsons D. 2004. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen. 12: 288–294.CrossrefGoogle Scholar

  • Kelly S.M., Jess T.J. & Price N.C. 2005. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751: 119–139.Google Scholar

  • Lewinski N., Colvin V. & Drezek R. 2008. Cytotoxicity of nanoparticles. Small 4: 26–49.CrossrefWeb of ScienceGoogle Scholar

  • Lewis L.N. 1993. Chemical catalysis by colloids and clusters. Chem. Rev. 93: 2693–2730.CrossrefGoogle Scholar

  • Li S., Yao D., Bian H., Chen Z., Yu J., Yu Q. & Liang H. 2011. Interaction between plumbagin and human serum albumin by fluorescence spectroscopy. J. Solution Chem. 40: 709–718.CrossrefWeb of ScienceGoogle Scholar

  • Li Y., Wu Y. & Ong B. S. 2005. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 127: 3266–3267.CrossrefGoogle Scholar

  • Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H. & Che C.M. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12: 527–534.Web of ScienceCrossrefGoogle Scholar

  • Long D., Wu G. & Chen S. 2007. Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat. Phys. Chem. 76: 1126–1131.Web of ScienceCrossrefGoogle Scholar

  • Mallick K., Witcomb M. & Scurrell M. 2004. Polymer stabilized silver nanoparticles: a photochemical synthesis route. J. Mater. Sci. 39: 4459–4463.CrossrefGoogle Scholar

  • Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T. & Yacaman M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 23–46.CrossrefGoogle Scholar

  • Mozo-Villarias A. 2002. Second derivative fluorescence spectroscopy of tryptophan in proteins. J. Biochem. Biophys. Methods 50: 163–178.CrossrefGoogle Scholar

  • Scholes G.D. 2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54: 57–87.Google Scholar

  • Seedher N. & Agarwal P. 2010. Complexation of fluoroquinolone antibiotics with human serum albumin: a fluorescence quenching study. J Lumin. 130: 1841–1848.Web of ScienceGoogle Scholar

  • Silver S. & Phung L.T. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753–789.CrossrefGoogle Scholar

  • Smith T. 2005. Human serum transferrin cobalt complex: stability and cellular uptake of cobalt. Bioorg. Med. Chem. 13: 4576–4579.CrossrefGoogle Scholar

  • Sun H., Li H. & Sadler P.J. 1999. Transferrin as a metal ion mediator. Chem. Rev. 99: 2817–2842.Google Scholar

  • Sun H.H., Zhang J., Zhang Y.Z., Yang L.Y., Yuan L.L. & Liu Y. 2012. Interaction of human serum albumin with 10-hydroxycamptothecin: spectroscopic and molecular modeling studies. Mol. Biol. Rep. 39: 5115–5123.Web of ScienceCrossrefGoogle Scholar

  • Sun W., Du Y., Chen J., Kou J. & Yu B. 2009. Interaction between titanium dioxide nanoparticles and human serum albumin revealed by fluorescence spectroscopy in the absence of photoactivation. J. Lumin. 129: 778–783.Web of ScienceGoogle Scholar

  • Sun X., Sun H., Ge R., Richter M., Woodworth R.C., Mason A.B. & He Q.Y. 2004. The low pKa value of iron-binding ligand Tyr188 and its implication in iron release and anion binding of human transferrin. FEBS Lett. 573: 181–185.Google Scholar

  • Wang J., Liu Z., Liu J., Liu S. & Shen W. 2008. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 69: 956–963.Google Scholar

  • Wang T., Xiang B.R., Li Y., Chen C.Y., Zhou X.H., Wang Z.M. & Fang H.S. 2009. Studies on the binding of a carditionic agent to human serum albumin by two-dimensional correlation fluorescence spectroscopy and molecular modeling. J. Mol. Struct. 921: 188–198.Web of ScienceGoogle Scholar

  • Wang T., Zhao Z., Wei B., Zhang L. & Ji L. 2010. Spectroscopic investigations on the binding of dibazol to bovine serum albumin. J. Mol. Struct. 970: 128–133.Web of ScienceGoogle Scholar

  • Yang B., Feng J., Li Y., Gao F., Zhao Y. & Wang J. 2003. Spectral studies on aluminum ion binding to the ligands with phenolic group(s): implications for the differences between N- and C-terminal binding sites of human serum apotransferrin. J. Inorg. Biochem. 96: 416–424.CrossrefGoogle Scholar

  • Yu X., Liu R., Yi R., Yang F., Huang H., Chen J. & Yi P. 2011. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 78: 1329–1335.CrossrefGoogle Scholar

  • Yuan J.L., Liu Z.G., Hu Z. & Zou G.L. 2007. Study on interaction between apigenin and human serum albumin by spectroscopy and molecular modeling. J. Photochem. Photobiol. A Chem. 191: 104–113.Web of ScienceGoogle Scholar

  • Zhang J., Sun H.H., Zhang Y.Z., Yang L.Y., Dai J. & Liu Y. 2012. Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J. Solution Chem. 41: 422–435.Web of ScienceCrossrefGoogle Scholar

  • Zhang L., Szeto K.Y., Wong W.B., Loh T.T., Sadler P.J. & Sun H. 2001. Interactions of bismuth with human lactoferrin and recognition of the BiIII-lactoferrin complex by intestinal cells. Biochemistry 40: 13281–13287.CrossrefGoogle Scholar

  • Zhang L.N., Wu F.Y. & Liu A.H. 2011. Study of the interaction between 2,5-di-[2-(4-hydroxy-phenyl) ethylene]-terephthalonitril and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79: 97–103.Google Scholar

  • Zhao Y.Y., Mandal R. & Li X.F. 2005. Intact human holotransferrin interaction with oxaliplatin. Rapid Commun. Mass Spectrom. 19: 1956–1962.Google Scholar

  • Žakelj S., Šturm K. & Kristl A. 2006. Ciprofloxacin permeability and its active secretion through rat small intestine in vitro. Int. J. Pharm. 313: 175–180.Google Scholar

About the article

E-mail:


Received: 2017-11-18

Accepted: 2017-05-18

Published Online: 2017-05-30

Published in Print: 2017-05-24


Citation Information: Biologia, Volume 72, Issue 5, Pages 569–580, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0066.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Neha Maurya, Jitendra Kumar Maurya, Upendra Kumar Singh, Ravins Dohare, Md Zafaryab, M. Moshahid Alam Rizvi, Meena Kumari, and Rajan Patel
Molecular Pharmaceutics, 2019, Volume 16, Number 3, Page 952
[3]
Seyed Hossein Fattahi Masoom, Marziyeh Nouri Dalouee, Asieh Sadat Fattahi, and Saeedeh Hajebi Khaniki
Asian Cardiovascular and Thoracic Annals, 2018, Page 021849231880819
[4]
Zeinab Moastajabodave, Sima Beigoli, Atena Sharifi Rad, Mohammad Reza Saberi, and Jamshidkhan Chamani
Journal of the Iranian Chemical Society, 2018
[5]
Neha Maurya, Mehraj ud din Parray, Jitendra Kumar Maurya, Amit Kumar, and Rajan Patel
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, Volume 199, Page 32
[6]
Negin Sabziparvar, Yosra Saeedi, Mina Nouri, Atefeh Sadat Najafi Bozorgi, Elahe Alizadeh, Farnoosh Attar, Keivan Akhtari, Seyyedeh Elaheh Mousavi, and Mojtaba Falahati
The Journal of Physical Chemistry B, 2018

Comments (0)

Please log in or register to comment.
Log in