Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 72, Issue 6

Issues

Parasites as biological tags of divergence in Central European gudgeon populations (Actinopterygii: Cyprinidae: Gobioninae)

Yuriy Kvach
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, CZ-60365 Brno Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markéta Ondračková
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, CZ-60365 Brno Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Bryjová
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, CZ-60365 Brno Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pavel Jurajda
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, CZ-60365 Brno Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-30 | DOI: https://doi.org/10.1515/biolog-2017-0073

Abstract

The parasite communities of three gudgeon species (Gobio gobio, Romanogobio belingi and R. vladykovi) were studied in two widely-separated rivers in the Czech Republic (Central Europe), the Bílina River (North Sea drainage) and Velička River (Black Sea drainage). Of the 25 parasite taxa identified, 21 species parasitised G. gobio, 8 species R. belingi and 13 species R. vladykovi. Due to the absence of specialist parasites, differences in the parasite community were mainly determined by the ecological conditions prevalent at the locality, which resulted in an increased similarity between sympatric species rather than between allopatric populations of the same species, i.e. G. gobio. Discriminant analysis showed significant differences between the four gudgeon populations. Five parasite species had significant power to discriminate particular parasite communities: the autogenic ectoparasites Gyrodactylus gobiensis, G. markakulensis and Paradiplozoon homoion; the allogenic endoparasite Metorchis xanthosomus and the autogenic endoparasite Acanthocephalus anguillae. Only G. markakulensis occurred in both allopatric populations of G. gobio. Sympatric gudgeon populations were discriminated mainly by the presence of autogenic parasites, especially those with direct life cycles. Differences in parasite infection level between G. gobio and representatives of Romanogobio may reflect variance in diet and/or habitat use. Allopatric populations differed in the number of allogenic parasite species, which were more frequent in the Velička. Finally, the parasite community of R. belingi from the upper Elbe basin was characterised by a lack of gudgeon specific parasites, possibly supporting its non-indigenous status.

Key words: Gobio; Romanogobio; sympatric species; parasite community; biological tags

References

  • Adámek Z., Zahrádková S., Jurajda P., Bernardová I., Jurajdová Z., Janáč M. & Němejcová D. 2013. The response of benthic macroinvertebrate and fish assemblages to human impact along the lower stretch of the rivers Morava and Dyje (Danube basin, Czech Republic). Croat. J. Fish. 71: 91–115. CrossrefGoogle Scholar

  • Bănărescu P.M., Šorić V.M. & Economidis P.S. 1999. Gobio gobio (Linnaeus, 1758), pp. 81–134. In: Bănărescu P.M. (ed.), The Freshwater Fishes of Europe, Vol. 5/1, cyprinidae 2, Part I: Rhodeus to Capoeta, Aula-Verlag, Wiebelsheim, 426 pp. ISBN: 389104044XGoogle Scholar

  • Brattey J. 1983. The effects of larval Acanthocephalus lucii on the pigmentation, reproduction and susceptibility to predation of the isopod Asellus aquaticus. J. Parasitol. 69: 1172–1173. CrossrefGoogle Scholar

  • Brown A.F., Chubb J.C. & Veltkamp C.J. 1986. A key to the species of Acanthocephala parasitic in British freshwater fishes. J. Fish Biol. 28: 327–334. CrossrefGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M. & Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83: 575–583. CrossrefGoogle Scholar

  • Catalano S.R., Whittington I.D., Donnellan S.C. & Gillanders B.M. 2014. Parasites as biological tags to assess host population structure: guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 3 (2): 220–226. CrossrefGoogle Scholar

  • Cribb T.H. & Bray R.A. 2010. Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Syst. Parasitol. 76: 1–7. CrossrefGoogle Scholar

  • Dussart G.B.J. 1979. Life cycles and distribution of the aquatic gastropod molluscs Bithynia tentaculata (L .), Gyraulus albus (Muller), Planorbis planorbis (L.) and Lymnaea peregra (Muller) in relation to water chemistry. Hydrobiologia 67 (3): 223–239. CrossrefGoogle Scholar

  • Esch E.W., Shostak A.W., Marcogliese D.J. & Goater T.M. 1990. Patterns and processes in helminth parasite communities: an overview, pp. 1–19. In: Esch G.W., Bush A.O. & Aho J.M. (eds), Parasite Communities: Pattern and Processes, Chapman and Hall, London, 335 pp. ISBN: 9789401068635Google Scholar

  • Faltýnková A. & Haas W. 2006. Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): before and today. Parasitol. Res. 99: 572–582. CrossrefGoogle Scholar

  • Foster M.S. 1969. Synchronized life cycles in the orange-crowned warbler and its mallophagan parasites. Ecology 50: 315–323. CrossrefGoogle Scholar

  • Freyhof J., Scholten M., Bischoff A., Wanzenböck J., Sttas S. & Wolter C. 2000. Extensions to the known range of the whitefin gudgeon in Europe and biogeographical implications. J. Fish Biol. 57: 1339–1342. CrossrefGoogle Scholar

  • Georgiev B., Biserkov V. & Genov T.1986. In toto staining method for cestodes with iron acetocarmine. Helminthologia 23: 279–281.Google Scholar

  • Gérard C., Hervé M., Réveillac E. & Acou A. 2016. Spatial distribution and impact of the gill-parasitic Mazocraes alosae (Monogenea Polyopisthocotylea) on Alosa alosa and A. fallax (Actinopterygii, Clupeidae). Hydrobiologia 763: 371–379. CrossrefGoogle Scholar

  • Gerasev P.I. 2008. Fauna monogeneĭ (Monogenea; Platyhelminthes) peskareĭ (Goboininae, Cyprinidae).1.Sostav, struktura I osobennosti rasprostraneniya [Fauna of monogeneans (Monogenea, Platyhelminthes) of gudgeons (Gobioninae, Cyprinidae). 1. Composition, structure, and characteristics of distribution. Parazitologiya 42 (5): 405–427.Google Scholar

  • Harris P.D., Shinn A.P., Cable J., Bakke T.A. & Bron J.E. 2008. GyroDb: gyrodactylid monogeneans on the web. Trends Parasitol. 24: 109–111. CrossrefGoogle Scholar

  • Holmes J.C. & Price P.W. 1986. Communities of parasites, pp. 187–213. In: Kikkawa J. & Anderson D.J. & (eds), Community Ecology: Pattern and Processes, Blackwell, Oxford, 432 pp. ISBN: 0867932643Google Scholar

  • Jurajda P., Janáč M., Valová Z. & Streck G. 2010. Fish community in the chronically polluted middle Elbe River. Folia Zool. Praha 59: 157–168.Google Scholar

  • Kottelat M. & Freyhof J. 2007. Handbook of European Freshwater Fishes. Publications Kottelat, Cornol and Freyhof, Berlin, 646 pp. ISBN: 978-2-8399-0298-4Google Scholar

  • Kvach Y., Ondračková M., Janáč M. & Jurajda P. 2016. Methodological issues affecting the study of fish parasites: 1. Duration of live fish storage prior to dissection. Dis. Aquat. Organ. 119: 107–115. CrossrefGoogle Scholar

  • Lafferty K.D. & Kuris A.M. 1996. Biological control of marine pests. Ecol. 77: 1989–2000. CrossrefGoogle Scholar

  • Le Brun N, Renaud F. & Lambert A. 1988. The genus Diplozoon (Monogenea, Polyopisthocotylea) in Southern France: speciation and specificity. Int. J. Parasitol. 18: 395–400. CrossrefGoogle Scholar

  • Locke S.A., McLaughlin J.D. & Marcogliese D.J. 2013. Predicting the similarity of parasite communities in freshwater fishes using the phylogeny, ecology and proximity of hosts. Oikos 122: 73–83. CrossrefGoogle Scholar

  • Lusk M.R., Lusková V. & Halačka K. 2000. Rybí osídlení říčky Veličky (povodí Moravy). [Fish community of the River Velička (Morava River basin)]. Bulletin Lampetra ZO ČSOP Vlašim 4: 168–174.Google Scholar

  • Matějusová I., Koubková B., Gelnar M. & Cunningham C.O. 2002. Paradiplozoon homoion Bychowsky & Nagibina, 1959 versus P. gracile Reichenbach-Klinke, 1961 (Monogenea): two species or phenotypic plasticity? Syst. Parasitol. 53: 39–47. CrossrefGoogle Scholar

  • Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M. & Bazzaz F.A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10: 689–710. CrossrefGoogle Scholar

  • MacKenzie K. 1983. Parasites as biological tags in fish population studies. Adv. Appl. Biol. 7: 251–331.Google Scholar

  • MacKenzie K. & Abaunza P. 1998. Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fish. Res. 38: 45–56. CrossrefGoogle Scholar

  • Malek M. 2004. Parasites as discrimination keys in two sympatric species of gobies. Bull. Eur. Ass. Fish Pathol. 24 (4): 173–179.Google Scholar

  • Malmberg G. 1970. The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea). Arkiv för Zoologi 23: 1–235.Google Scholar

  • Mendel J., Lusk S., Vasil’eva E.D., Vasil’ev V.P., Lusková V., Ekmekci F.G., Erk’akan F., Ruchin A., Koščo J., Vetešník L., Halačka K., Šanda R., Pashkov A.N. & Reshetnikov S.I. 2008. Molecular phylogeny of the genus Gobio Cuvier, 1816 (Teleostei: Cyprinidae) and its contribution to taxonomy. Mol. Phylog. Evol. 47: 1061–1075. CrossrefGoogle Scholar

  • Mendel J., Papousek I., Maresová E., Vetešník L., Halačka K., Nowak M. & Cízková D. 2012. Microsatellite loci for Palaearctic gudgeons: markers for identifying intergeneric hybrids between Romanogobio and Gobio. Mol. Ecol. Res. 12: 972–974.Google Scholar

  • Munõz G, Grutter A.S. & Cribb T.H. 2006. Endoparasite communities of five fish species (Labridae: Cheilininae) from Lizard Island: how important is the ecology and phylogeny of the hosts? Parasitology 132: 363–374. CrossrefGoogle Scholar

  • Naseka A.M., Bogutskaya N.G. & Bănărescu P.M. 1999. Gobio albipinnaitus Lukasch, 1933, pp. 37–68. In: Bănărescu P.M. (ed.), The Freshwater Fishes of Europe, Vol. 5/1, Cyprinidae 2, Part I: Rhodeus to Capoeta, Aula-Verlag, Wiebelsheim, 426 pp. ISBN: 389104044XGoogle Scholar

  • Nowak M., Klaczak A., Szczerbik P., Mendel J. & Popek W. 2013. Rapid range expansion of the “whitefin” gudgeon Romanogobio cf. belingi (Teleostei: Cyprinidae) in a lowland tributary of the Vistula River (Southeastern Poland). Ann. Limnol. 49: 319–326. CrossrefGoogle Scholar

  • Pečínková M., Matějusová I., Koubková B. & Gelnar M. 2005. Classification and occurrence of abnormally developed Paradiplozoon homoion (Monogenea, Diplozoinae) parasitising gudgeon Gobio gobio. Dis. Aquat. Organ. 64: 63–68. CrossrefGoogle Scholar

  • Poulin R. 1992. Determinants of host-specificity in parasites of freshwater fishes. Int. J. Parasitol. 22: 753–758. CrossrefGoogle Scholar

  • Poulin R. 2007. Are there general laws in parasite ecology? Parasitology 134: 763–776. CrossrefGoogle Scholar

  • Poulin R. & Dick T.A. 2007. Spatial variation in population density across the geographical range in helminth parasites of yellow perch Perca flavescens. Ecography 30: 629–636. CrossrefGoogle Scholar

  • Poulin R. & Kamiya T. 2015. Parasites as biological tags of fish stocks: a meta-analysis of their discriminatory power. Parasitology 142: 145–155. CrossrefGoogle Scholar

  • Root R.B. 1967. The niche exploration pattern of the blue-gray gnatcatcher. Ecol. Monogr. 37: 317–350. CrossrefGoogle Scholar

  • Šimková A., Morand S., Jobet E., Gelnar M. & Verneau O. 2004. Molecular phylogeny of congeneric monogenean parasites (Dactylogyrus): a case of intrahost speciation. Evolution 58 (5): 1001–1018. CrossrefGoogle Scholar

  • Šimková A., Navrátilová P., Dávidová M., Ondračková M., Sinama M., Chappaz R., Gilles A. & Costedoat C. 2012. Does invasive Chondrostoma nasus shift the parasite community structure of endemic Parachondrostoma toxostoma in sympatric zones? Parasites Vectors 5: 200. CrossrefGoogle Scholar

  • Soes D.M., Spaans P.J. & Veenvliet P. 2005. The whitefin gudgeon Romanogobio belingi new for the Netherlands. Lauterbornia 55: 141–144.Google Scholar

  • Sørensen T.A. 1948. A new method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs (Biologiske Skrifter) 5: 1–34.Google Scholar

  • Spikmans F., Kranenbarg J. & van Kessel N. 2011. Witvingrondel: een invasieve exoot in Rijn en Maas? De Levende Natuur 112 (3): 97–100.Google Scholar

  • Sudarikov V.J., Lomakin V.V., Atajev A.M. & Semenova N.N. 2006. Metatserkarii trematod – parazity ryb kaspiĭskogo morya i del’ty Volgy [Metacercariae of Flukes (Trematoda) – Fish Parasites from the Caspian Sea and the Volga Delta]. In: Be’er S.A. (ed.), Metatserkarii trematod – parazity gidrobiontov Rosii [Metacercariae of Flukes (Trematoda) – hydrobiont parasites of Russia], Vol.2, Nauka, Moscow,183 pp. ISBN: 5-02-006443-2Google Scholar

  • Tang K.L., Agnew M.K., Chen W.-J., Hirt M.V., Raley M.E., Sado T., Schneider L.M., Yang L., Bart H.L., He S., Liu H., Masaki M., Kenji S., Andrew M.S., Robert M.W. & Richard L.M. 2011. Phylogeny of the gudgeons (Teleostei: Cyprinidae: Gobioninae). Mol. Phylogen. Evol. 61: 103–124. CrossrefGoogle Scholar

  • Torchin M.E., Lafferty K.D., Dobson A.P., McKenzie V.J. & Kuris A.M. 2003. Introduced species and their missing parasites. Nature 421: 628–629. CrossrefGoogle Scholar

  • Valtonen E.T., Pulkkinen K., Poulin R. & Julkunen M. 2001. The structure of parasite component communities in brackish water fishes of the northeastern Baltic Sea. Parasitology 122 (Pt 4): 471–481. CrossrefGoogle Scholar

  • Vickery W.L. & Poulin R. 1998. Parasite extinction and colonisation and the evolution of parasite communities a simulation study. Int. J. Parasitol. 17: 727–737. CrossrefGoogle Scholar

  • Wolter C. 2006. First record of river gudgeon Romanogobio belingi in the River Havel, Brandenburg, Germany. Lauterbornia 56: 91–94.Google Scholar

  • Zander C.D. 1998. Ecology of host parasite relationships in the Baltic Sea. Naturwissenschaften 85: 426–436. CrossrefGoogle Scholar

  • Zander C.D. 2001. The guild as a concept and a means in ecological parasitology. Parasitol. Res. 87: 484–488. CrossrefGoogle Scholar

  • Zander C.D., Reimer L.W., Barz K., Dietel G. & Strohbach U. 2000. Parasite communities of the Salzhaff (Northwest Mecklenburg, Baltic Sea). II. Guild communities, with special regard to snails, benthic crustaceans, and small-sized fish. Parasitol. Res. 86: 359–372. CrossrefGoogle Scholar

  • Zardoya R. & Doadrio I. 1998. Phylogenetic relationships of Iberian cyprinids: systematic and biogeographical implications. Proc. Roy. Soc. London B 265 (1403): 1365–1372. CrossrefGoogle Scholar

About the article

Received: 2017-01-09

Accepted: 2017-03-10

Published Online: 2017-06-30

Published in Print: 2017-06-27


Citation Information: Biologia, Volume 72, Issue 6, Pages 671–679, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0073.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in