Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 8

Issues

The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats

Omur Karabulut-Bulan / Huseyin Us
  • Department of Biology, Faculty of Science, Istanbul University, 34134-Vezneciler, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bertan Boran Bayrak
  • Department of Chemistry, Faculty of Engineering, Istanbul University, 34320-Avcilar, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ayca Sezen-Us
  • Department of Biology, Faculty of Science, Istanbul University, 34134-Vezneciler, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Refiye Yanardag
  • Department of Chemistry, Faculty of Engineering, Istanbul University, 34320-Avcilar, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-31 | DOI: https://doi.org/10.1515/biolog-2017-0092

Abstract

Exposure of biological materials to ionizing irradiation causes accumulation of reactive oxygen species. The current study aimed to investigate whether melatonin or carnosine could provide protection against irradiation-induced small intestinal damage. Forty Wistar albino rats were divided into five groups. Melatonin, carnosine, and combination of carnosine and melatonin were injected into rats in the third, fourth, and fifth groups, respectively. Rats were injected three times every 48 hours. All groups, excluding the control group, were exposed to a dose of 8 Gray whole body gamma irradiation one hour after the second injection. It was determined that irradiation caused degenerative changes in the intestinal tissues, reduced PCNA (proliferating cell nuclear antigen) -positive cell number, and increased caspase-3- and TNF-α (tumour necrosis factor alpha) -positive crypt cell numbers. Results obtained from antioxidant-treated groups were similar to those from the control group. Lipid peroxidation and protein carbonyl levels as well as superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, myeloperoxidase, lactate dehydrogenase and xanthine oxidase activities were increased. However, catalase, sodium potassium ATPase activities and glutathione levels were decreased in the irradiated group of animals. Treatment with antioxidants reversed these changes. It is suggested that exogenous melatonin, carnosine, and melatonin+carnosine combination exhibit protective effects against irradiation-induced small intestinal damage.

Key words: irradiation; antioxidants; small intestine; oxidative stress; tissue damage

References

  • Abou-Seif M.A.M., El-Naggar M.M., El-Far M., Ramadan M. & Salah N.2003. Amelioration ofradiation-induced oxidative stress and biochemical alteration by SOD model compounds in pre-treated gamma-irradiated rats. Clin. Chim. Acta 337(1-2): 23–33. CrossrefGoogle Scholar

  • Akpolat M. 2007. Gamma radyasyonun ileum kadehsi hücrelerinde oluşturduğu hasarlara karşıcurcumin ve c vitamininin koruyucu etkilerinin ışık ve elektron mikroskobik düzeylerde incelenmesi [Examining the protective effects of curcumin and vitamin c against gamma radiation-induced ileum goblet cell damage at light and electron microscopic levels]. PhD Thesis, Trakya University, Edirne, Turkey, 88 pp.Google Scholar

  • Aydin A.F, Kucukgergin C., Ozdemirler-Erata G., Kocak-Toker N. & Uysal M. 2010a. The effect of carnosine treatment on prooxidant-antioxidant balance in liver, heart and brain tissues of male aged rats. Biogerontology 11 (1): 103–109. CrossrefGoogle Scholar

  • Aydin A.F., Kusku-Kiraz Z., Dogru-Abbasoglu S., Gulluoglu M., Uysal M. & Kocak-Toker N. 2010b. Effect of carnosine against thioacetamide-induced liver cirrhosis in rat. Peptides 31 (1): 67–71. .CrossrefGoogle Scholar

  • Babizhayev M.A., Seguin M.C., Gueyne J., Evstigneeva R.P., Ageyeva E.A. & Zheltukhina G.A. 1994. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem. J. 304 (Pt.2): 509–516. CrossrefPubMedGoogle Scholar

  • Brzezinski A. 1997. Melatonin in humans. N. Engl. J. Med. 336 (3): 186–195. CrossrefPubMedGoogle Scholar

  • Carney J.M. & Carney A.M. 1994. Role of protein oxidation in aging and in age-associated neurodegenerative diseases. Life Sci. 55 (25-26): 2097–2103. CrossrefPubMedGoogle Scholar

  • Carroll M.P., Zera R.T., Roberts J.C., Schlafmann S.E., Feeney D.A., Johnston G.R., West M.A. & Bubrick M.P. 1995. Efficacy of radioprotective agents in preventing small and large bowel radiation injury. Dis. Colon Rectum 38 (7): 716–722. CrossrefPubMedGoogle Scholar

  • Chan W.K.M., Decker E.A., Lee J.B. & Butterfield L.D. 1994. EPR spin-trapping studies of the hydroxy radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42 (7): 1407–1410. CrossrefGoogle Scholar

  • Chavan S., Sava L., Saxena V., Pillai S., Sontakke A. & Ingole D. 2005. Reduced glutathione: importance of specimen collection. Indian J. Clin. Biochem. 20 (1): 150–152. .CrossrefPubMedGoogle Scholar

  • Corte E.D. & Stirpe F. 1968. Regulation of xanthine oxidase in rat liver: modifications of the enzyme activity of rat liver supernatant on storage at 20 degrees. Biochem. J. 108 (2): 349–351. CrossrefPubMedGoogle Scholar

  • Fernandez M., Medina A., Santos F., Carbajo E., Rodriguez J., Alvarez J. & Cobo A. 2001. Exacerbated inflammatory response induced by insulin-like growth factor-I treatment in rats with ischemic acute renal failure. J. Am. Soc. Nephrol. 12 (9): 1900–1907. PMID: 11518783PubMedGoogle Scholar

  • Fouad A.A., Qureshi H.A., Yacoubi M.T. & Al-Melhim W.N. 2009. Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity. Food Chem. Toxicol. 47 (11): 2863–2870. .CrossrefPubMedGoogle Scholar

  • Fujii T., Takaoka M., Muraoka T., Kurata H., Tsuruoka N., Ono H., Kiso Y., Tanaka T. & Matsumura Y. 2005. Dietary supplementation of L-carnosine prevents ischemia/reperfusion induced renal injury in rats. Biol. Pharm. Bull. 28 (2): 361–363. CrossrefPubMedGoogle Scholar

  • Giris M., Erbil Y., Oztezcan S., Olgac V., Barbaros U., Deveci U., Kirgiz B., Uysal M. & Toker G.A. 2006. The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oygenase-1 on radiation enteritis. Am. J. Surg. 191 (4): 503–509. CrossrefGoogle Scholar

  • Habig W.H. & Jacoby W.B. 1981. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 77: 398–405. CrossrefPubMedGoogle Scholar

  • Haeri S.A., Rajabi H., Fazelipour S. & Hosseinimehr S.J. 2014. Carnosine mitigates apoptosis and protects testicular seminiferous tubules from gamma-radiation-induced injury in mice. Andrologia 46 (9): 1041–1046. CrossrefPubMedGoogle Scholar

  • Hussein M.R., Abu-Dief E.E., Kamel E., El-Ghait A.T.A., Abdulwahed S.R. & Ahmad M.H. 2008. Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: An animal model. Cell Biol. Int. 32 (11): 1353–1361. CrossrefPubMedGoogle Scholar

  • Javois L.C. (ed.). 1999. Immunocytochemical Methods and Protocols. 2nd ed. Series: Methods in Molecular Biology, Vol. 115. Humana Pres, Totowa, New Jersey, 465 pp. ISBN-10: 0-89603-570-0, ISBN-13: 978-0-89603-570-6Google Scholar

  • Kanter M., Tarladaçalışır Y.T., Akpolat M. & Mercantepe T. 2008. Gamma radyasyona bağlıoluşan jejunum mukoza hasarina karşı curcumin ve amifostinin koruyucu etkilerinin incelenmesi [Protective effect of curcumin and amifostine on gamma radiation-induced jejunal mucosal damage in rats]. Tıp Araştırmaları Dergisi 6 (3): 128–135.Google Scholar

  • Karabulut-Bulan O., Bayrak B.B., Arda-Pirincci P., Sarikaya-Unal G., Us H. & Yanardag R. 2015. Role of exogenous melatonin on cell proliferation and oxidant/antioxidant system in aluminum-induced renal toxicity. Biol. Trace Elem. Res. 168 (1): 141–149. CrossrefPubMedGoogle Scholar

  • Karbownik M. & Reiter R.J. 2000. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc. Soc. Exp. Biol. Med. 225 (1): 9–22. PMID: 10998194CrossrefPubMedGoogle Scholar

  • Klucinski P., Wójcik A., Grabowska-Bochenek R., Gmiński J., Mazur B., Hrycek A., Cieślik P. & Matirosian G. 2008. Erythrocyte antioxidant parameters in workers occupationally exposed to low levels of ionizing radiation. Ann. Agric. Environ. Med. 15 (1): 9–12. PMID: 18581973PubMedGoogle Scholar

  • Kunwar A., Bag P.P., Chattopadhyay S., Jain V.K. & Priyadarsini K.I. 2011. Anti-apoptotic, anti-inflammatory, and immunomodulatory activities of 3,3-diselenodipropionic acid in mice exposed to whole body γ-radiation. Arch. Toxicol. 85 (11): 1395–1405. CrossrefPubMedGoogle Scholar

  • Lebrun F., Francois A., Vergnet M., Lebaron-Jacobs L., Gourmelon P. & Griffiths N.M. 1998. Ionizing radiation stimulates muscarinic regulation of rat intestinal mucosal function. Am. J. Physiol. 275 (6 Pt.1): G1333–G1340. PMID: 9843770Google Scholar

  • Ledwozyw A., Michalak J., Stepień A. & Kadziołka A. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin. Chim. Acta 155 (3): 275–283. CrossrefPubMedGoogle Scholar

  • Lentsch A.B., Atsushi K. & Yoshidome H. 2000. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32 (2): 169–173. CrossrefPubMedGoogle Scholar

  • Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S. & Stadtman E.R. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464–478. CrossrefPubMedGoogle Scholar

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1): 265–275. PMID: 14907713PubMedGoogle Scholar

  • Mohseni M., Mihandoost E., Shirazi A., Sepehrizadeh Z., Bazzaz J.T. & Ghazikhansari M. 2012. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat. Res. 738-739: 19–27. CrossrefPubMedGoogle Scholar

  • Monobe M., Hino M., Sumi M., Uzawa A., Hirayama R. & Ando K. 2005. Protective effect of melatonin on γ-ray induced intestinal damage. Int. J. Radiat. Biol. 81 (11): 855–860. CrossrefPubMedGoogle Scholar

  • Mylroie A.A., Collins H., Umbles C. & Kyle J. 1986. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol. Appl. Pharmacol. 82 (3): 512–520. CrossrefPubMedGoogle Scholar

  • Neoman E., Zahran A.M. & Kamal A.M. 2002. Vitamin E and selenium administration as a modulator of antioxidant defence system: Biochemical assesment and modification. Biol. Trace Elem. Res. 86 (1): 55–64. CrossrefGoogle Scholar

  • Noori S. & Mahboob T. 2010. Antioxidant effect of carnosine pretreatment on cisplatin-induced renal oxidative stress in rats. Indian J. Clin. Biochem. 25 (1): 86–91. CrossrefPubMedGoogle Scholar

  • Onal C., Kayaselcuk F., Topkan E., Yavuz M., Bacanli D. & Yavuz A. 2011. Protective effects of melatonin and octreotide against radiation-induced intestinal injury. Dig. Dis. Sci. 56 (2): 359–367. CrossrefPubMedGoogle Scholar

  • Ozalpan A.2001. Temel Radyobiyoloji [Basic Radiobiology]. 1st ed. Halic University Publication, Istanbul, 353 pp. ISBN: 9758574000, 9789758574001Google Scholar

  • Paglia D.E. & Valentine W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70 (1): 158–169. PMID: 6066618PubMedGoogle Scholar

  • Potten C.S., Merritt A., Hickman J., Hall P. & Faranda A. 1994. Characterization of radiation-induced apoptosis in the small intestine and its biological implications. Int. J. Radiat. Biol. 65 (1): 71–78. CrossrefPubMedGoogle Scholar

  • Pratheeshkumar P. & Kuttan G. 2011. Protective role of Vernonia cinerea L. against gamma-radiation-induced immunosuppression and oxidative stress in mice. Hum. Exp. Toxicol. 30 (8): 1022–1038. CrossrefPubMedGoogle Scholar

  • Reiter R.J., Tan D.X., Mayo J.C., Sainz R.M., Leon J. & Czarnocki Z. 2003. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim. Pol. 50 (4): 1129–1146. CrossrefPubMedGoogle Scholar

  • Ridderstap A.S. & Bonting S.L. 1969. Na+-K+ activated ATPase and exocrine pancreatic secretion in vitro. Am. J. Physiol. 217 (6): 1721–1727.PubMedGoogle Scholar

  • Saada H.N., Rezk R.G. & Eltahawy N.A. 2010. Lycopene protects the structure of the small intestine against gamma-radiation-induced oxidative stress. Phytother. Res. 24 (Suppl. 2): S204–S208. CrossrefGoogle Scholar

  • Saclarides T.J. 1997. Radiation injuries of the gastrointestinal tract. Surg. Clin. N. Am. 77 (1): 261–268. CrossrefGoogle Scholar

  • Sainza R.M., Mayo J.C., Rodriguez C., Tan D.X., Lopez-Burilloa S. & Reiter R.J. 2003. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell. Mol. Life Sci. 60 (7): 1407–1426. CrossrefPubMedGoogle Scholar

  • Samarth R.M. & Kumar A. 2003. Mentha piperita (Linn.) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. Indian J. Exp. Biol. 41 (3): 229–237. PMID: 15267153PubMedGoogle Scholar

  • Schulze-Osthoff K. 2008. Apoptosis, cytotoxicity and cell proliferation, pp. 2–15. In: Rode H.J., Eisel D. & Frost I. (eds), Roche Applied Science: Apoptosis, Cell Death and Cell proliferation, 4th edn, Roche Diagnostics GmbH, Mannheim 186 pp.Google Scholar

  • Sener G., Jahovic N., Tosun O., Atasoy B.M. & Yegen B.C. 2003. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci. 74 (5): 563–572. CrossrefPubMedGoogle Scholar

  • Sert C. & Çelik M.S. 1996. Radyasyondan koruyucu ajanlar [Radioprotective agents]. Türkiye Klinikleri J. Med. Sci. 16 (4): 292–298.Google Scholar

  • Sheen-Chen S., Ho H., Chen W. & Eng H. 2003. Obstructive jaundice alters proliferating cell nuclear antigen expression in rat small intestine. World J. Surg. 27 (10): 1161–1164. CrossrefPubMedGoogle Scholar

  • Somosy Z., Horvath M., Telbisz A., Rez G. & Palfia Z. 2002. Morphological aspects of ionizing radiation response of small intestine. Micron 33 (2): 167–178. CrossrefPubMedGoogle Scholar

  • Srivastava M., Chandra D. & Kale R.K. 2002. Modulation of radiation-induced changes in the xanthine oxidorecustase system in the livers of mice by its inhibitors. Radiat. Res. 157 (3): 290–297. PMID: 11839091CrossrefPubMedGoogle Scholar

  • Take G., Erdogan D., Helvacioglu F., Göktas G., Ozbey G., Uluoglu C., Yücel B., Guney Y., Hicsonmez A. & Ozkan S. 2009. Effect of melatonin and time of administration on irradiation-induced damage to rat testes, effects of melatonin on irradiated testes. Braz. J. Med. Biol. Res. 42 (7): 621–628. PMID: 19578641CrossrefPubMedGoogle Scholar

  • Tanaka R.A., Ramos F.M.M., Almeida S.M., Vizioli M.R. & Bóscolo F.N. 2005. Evaluation of radioprotecive effect of carnosine (β-Alanyl-1-Histidine) on the wound healing in rats. J. Appl. Oral Sci. 13 (3): 253–258. CrossrefGoogle Scholar

  • Wei H. & Frenkel K. 1993. Relationship of oxidative events and DNA oxidation in SENCAR mice to in vivo promoting activity of phorbol ester-type tumor promoter. Carcinogenesis 14 (6): 1195–1120. CrossrefPubMedGoogle Scholar

  • Wendel A. 1981. Glutathione peroxidase. Methods Enzymol. 77: 325–333. CrossrefPubMedGoogle Scholar

  • Wroblewski F. 1957. Clinical significance serum enzyme alterations associated with myocardial infarction. Am. Hearth J. 54 (2): 219–224. CrossrefGoogle Scholar

  • Yan S.L., Wu S.T., Yin M.C., Chen H.T. & Chen H.C. 2009. Protective effects from carnosine and histidineon acetaminophen-induced liver injury. J. Food Sci. 74 (8): 259–265. CrossrefGoogle Scholar

  • Yazıcı C. & Köse K. 2004. Melatonin: Karanlığın antioksidan gücü [Melatonin: The antioxidant power of darkness]. Erciyes Üniversitesi Sağlık Bilimleri Dergisi / Erciyes Univ. J. Health Sci. 13 (2): 56–65.Google Scholar

About the article

Received: 2017-02-05

Accepted: 2017-05-12

Published Online: 2017-08-31

Published in Print: 2017-08-28


Citation Information: Biologia, Volume 72, Issue 8, Pages 935–945, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0092.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in