Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

See all formats and pricing
More options …
Volume 72, Issue 8


Experimental evidence of the successful invader Orconectes limosus outcompeting the native Astacus leptodactylus in acquiring shelter and food

Sandra-Florina Lele
  • Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 300115, Timisoara, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucian Pârvulescu
  • Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 300115, Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-31 | DOI: https://doi.org/10.1515/biolog-2017-0094


Successful invasive species compete for the same available resources with related native species, frequently driving the latter to the cusp of extirpation because of a lack of adaptive response. In this paper we analysed the behavioural relationships between two species of crayfish, the native Astacus leptodactylus and the invasive Orconectes limosus in an ongoing invasion process in the Lower Danube, in Eastern Europe. We tested the species’ ability to acquire shelter and food in laboratory experiments in both intra- and interspecific confrontations. The dominant behaviour of the invasive species is obvious even towards its own congeners, while the native species display a more tolerant conspecific behaviour. With respect to interspecific confrontation, the invasive crayfish males and females were inclined to sex-specific dominance regarding shelters. A roughly balanced behaviour was noted for intersexual confrontations. The results of this study also highlight that the occupancy of a shelter is more disputed than food resources, which appear to be opportunistically acquired. In the context of the current invasion process, we hypothesised that the effect caused by interference competition might lead to a decline of the native species. Further investigations may reveal if there is any hope for recovery of the native species.

Key words: aggression; behaviour; competition; invasive species; lower Danube


  • Ackefors H. 1996. The development of crayfish culture in Sweden during the last decade. Freshwater Crayfish 11 (1): 627–654.Google Scholar

  • Aquiloni L., Gonçalves V., Inghilesi A.F. & Gherardi F. 2012. Who’s what? Prompt recognition of social status in crayfish. Behav. Ecol. Sociobiol. 66 (5): 785–790. CrossrefGoogle Scholar

  • Barki A. & Karplus I. 2016. The behavioral mechanism of competition for food between tilapia (Oreochromis hybrid) and crayfish (Cherax quadricarinatus). Aquaculture 450: 162–167. CrossrefGoogle Scholar

  • Bergman D.A. & Moore P.A. 2003. Field observations of intraspecific agonistic behavior of two crayfish species, Orconectes rusticus and Orconectes virilis, in different habitats. Biol. Bull, 205 (1): 26–35. CrossrefGoogle Scholar

  • Bouckaert E.K., Auer N.A., Roseman E.F. & Boase J. 2014. Verifying success of artificial spawning reefs in the St. Clair–Detroit River System for lake sturgeon (Acipenser fulvescens Rafinesque, 1817). J. Appl. Ichthyol. 30: 1393–1401. CrossrefGoogle Scholar

  • Broennimann O., Treier U.A., Müller-Schärer H., Thuiller W., Peterson A.T. & Guisan A. 2007. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10: 701–709. CrossrefPubMedGoogle Scholar

  • Buřič M., Kouba A. & Kozák P. 2013. Reproductive plasticity in freshwater invader: from long-term sperm storage to parthenogenesis. PLoS One 8 (10): e77597. CrossrefPubMedGoogle Scholar

  • Buřič M., Kozák P. & Kouba A. 2009. Movement patterns and ranging behavior of the invasive spiny-cheek crayfish in a small reservoir tributary. Fundam. Appl. Limnol. 174 (4): 329–337. CrossrefGoogle Scholar

  • Christy J.H. 1987. Competitive mating, mate choice and mating associations of brachyuran crabs. Bull. Mar. Sci. 41 (2): 177–191.Google Scholar

  • Chuang A. & Peterson C.R. 2016. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22 (2): 494–512. CrossrefGoogle Scholar

  • Chucholl C. 2013. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 15 (1): 125–141. CrossrefGoogle Scholar

  • Chucholl C. 2016. The bad and the super-bad: prioritising the threat of six invasive alien to three imperilled native crayfishes. Biol. Invasions 18 (7): 1967–1988. CrossrefGoogle Scholar

  • Figler M.H., Blank G.S. & Peeke H.V. 1997. Maternal aggression and post-hatch care in red swamp crayfish, Procambarus clarkii (Girard): The influences of presence of offspring, fostering, and maternal molting. Mar. Freshwater Behav. Physiol. 30 (3): 173–194. CrossrefGoogle Scholar

  • Garvey J.E., Stein R.A. & Thomas H.M. 1994. Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology 75 (2): 532–547. CrossrefGoogle Scholar

  • Gherardi F. 2006. Crayfish invading Europe: the case study of Procambarus clarkii. Mar. Freshwater Behav. Physiol. 39 (3): 175–191. CrossrefGoogle Scholar

  • Grow L. & Merchant H. 1980. The burrow habitat of the crayfish, Cambarus diogenes diogenes (Girard). Am. Midl. Nat. 103 (2): 231–237. CrossrefGoogle Scholar

  • Groza M.I., Pop-Vancia V. & Mireţan V. 2016. Diel activity and use of multiple artificially constructed shelters in Astacus leptodactylus (Decapoda: Astacidae). Biologia 71 (12): 1369–1379. CrossrefGoogle Scholar

  • Guan R.Z. 1994. Burrowing behaviour of signal crayfish, Pacifastacus leniusculus (Dana), in the River Great Ouse, England. Freshwater Forum 4 (3): 155–168.Google Scholar

  • Hirsch P.E., Burkhardt-Holm P., Töpfer I. & Fischer P. 2016. Movement patterns and shelter choice of spiny-cheek crayfish (Orconectes limosus) in a large lake’s littoral zone. Aquat. Invasions 11 (1): 55–65. CrossrefGoogle Scholar

  • Hudina S., GalićN., Roessink I. & Hock K. 2011. Competitive interactions between co-occurring invaders: identifying asymmetries between two invasive crayfish species. Biol. Invasions 13 (8): 1791–1803. CrossrefGoogle Scholar

  • Hudina S., Žganec K. & Hock K. 2015. Differences in aggressive behaviour along the expanding range of an invasive crayfish: an important component of invasion dynamics. Biol. Invasions 17 (11): 3101–3112. CrossrefGoogle Scholar

  • Ilhéu M., Acquistapace P., Benvenuto C. & Gherardi F. 2003. Shelter use of the Red-Swamp Crayfish (Procambarus clarkii) in dry-season stream pools. Arch. Hydrobiol. 157 (4): 535–546. CrossrefGoogle Scholar

  • Imhoff E.M., Mortimer R.J.G., Christmas M. & Dunn A.M. 2011. Invasion progress of the signal crayfish Pacifastacus leniusculus (Dana) and displacement of the native whiteclawed crayfish Austropotamobius pallipes (Lereboullet) in the River Wharfe, UK. Freshwater Crayfish 18: 45–53. CrossrefGoogle Scholar

  • Kaczer L., Pedetta S. & Maldonado H. 2007. Aggressiveness and memory: subordinate crabs present higher memory ability than dominants after an agonistic experience. Neurobiol. Learn. Mem. 87 (1): 140–148. CrossrefPubMedGoogle Scholar

  • Kawai N., Kono R. & Sugimoto S. 2004. Avoidance learning in the crayfish (Procambarus clarkii) depends on the predatory imminence of the unconditioned stimulus: a behavior systems approach to learning in invertebrates. Behav. Brain Res. 150 (1-2): 229–237. CrossrefPubMedGoogle Scholar

  • Klocker C.A. & Strayer D.L. 2004. Interactions among an invasive crayfish (Orconectes rusticus), a native crayfish (Orconectes limosus), and native bivalves (Sphaeriidae and Unionidae). Northeast. Nat. 11 (2): 167–178. CrossrefGoogle Scholar

  • Kouba A., Petrusek A. & Kozák P. 2014. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Managt. Aquatic Ecosyst. 413: article number 05, 21 pp. CrossrefGoogle Scholar

  • Lee C.E. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17 (8): 386–391. CrossrefGoogle Scholar

  • Leon M., Merner M.J., Dreyer A.A., Cooper A., Scott L., Berendzen P.B., McCullough D.A. & Merten E.C. 2016. Range expansion of the invasive rusty crayfish Orconectes rusticus (Girard, 1852) (Decapoda: Astacoidea) in northeastern Iowa (USA) rivers. J. Crust. Biol. 36 (1): 99–104. CrossrefGoogle Scholar

  • Lodge D.M., Deines A., Gherardi F., Yeo D.C., Arcella T., Baldridge A.K., Barnes M.A., Chadderton W.L., Feder J.L., Gantz C.A. & Howard G.W. 2012. Global introductions of crayfishes: Evaluating the impact of species invasions on ecosystem services. Annu. Rev. Ecol. Evol. Syst. 43: 449–472. CrossrefGoogle Scholar

  • Mathers K.L., Chadd R.P., Dunbar M.J., Extence C.A., Reeds J., Rice S.P. & Wood P.J. 2016. The long-term effects of invasive signal crayfish (Pacifastacus leniusculus) on instream macroinvertebrate communities. Sci. Total Environ. 556: 207–218. CrossrefPubMedGoogle Scholar

  • Matsuzaki S.I.S., Sakamoto M., Kawabe K. & Takamura N. 2012. A laboratory study of the effects of shelter availability and invasive crayfish on the growth of native stream fish. Freshwater Biol. 57 (4): 874–882. CrossrefGoogle Scholar

  • Meade M.E. & Watts S.A. 1995. Weight gain and survival of juvenile Australian crayfish Cherax quadricarinatus fed formulated feeds. J. World Aquacult. Soc. 26 (4): 469–474. CrossrefGoogle Scholar

  • Momot W.T. 1995. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish. Sci. 3 (1): 33–63. CrossrefGoogle Scholar

  • Moore P.A. & Bergman D.A. 2005. The smell of success and failure: the role of intrinsic and extrinsic chemical signals on the social behavior of crayfish. Integr. Comp. Biol. 45(4): 650–657. .CrossrefPubMedGoogle Scholar

  • Musil M., Buřič M., Policar T., Kouba A. & Kozák P. 2010. Comparison of diurnal and nocturnal activity between noble crayfish (Astacus astacus) and spinycheek crayfish (Orconectes limosus). Freshwater Crayfish 17: 189–193.Google Scholar

  • Oidtmann B., Heitz E., Rogers D. & Hoffmann R.W. 2002. Transmission of crayfish plague. Dis. Aquat. Org. 52: 159–167. CrossrefPubMedGoogle Scholar

  • Pârvulescu L., Paloş C. & Molnar P. 2009. First record of the spiny-cheek crayfish Orconectes limosus (Rafinesque, 1817) (Crustacea: Decapoda: Cambaridae) in Romania. North-West. J. Zool. 5 (2): 424şb428.Google Scholar

  • Pârvulescu L., Pîrvu M., Moroşan L.G. & Zaharia C. 2015. Plasticity in fecundity highlights the females’ importance in the spiny-cheek crayfish invasion mechanism. Zoology 118 (6): 424–432. CrossrefGoogle Scholar

  • Pârvulescu L., Schrimpf A., Kozubíková E., Cabanillas Resino S., Vrålstad T., Petrusek A. & Schulz R. 2012. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Dis. Aquat. Org. 98 (1): 85–94. .CrossrefPubMedGoogle Scholar

  • Preisser E.L., Bolnick D.I. & Benard M.F. 2005. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86 (2): 501–509. CrossrefGoogle Scholar

  • Puky M. & Schád P. 2006. Orconectes limosus colonises new areas fast along the Danube in Hungary. Bull. Fr. Pêche Piscic. 380-381: 919–926. CrossrefGoogle Scholar

  • R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

  • Rahel F.J. & Stein R.A. 1988. Complex predator-prey interactions and predator intimidation among crayfish, piscivorous fish, and small benthic fish. Oecologia 75 (1): 94–98. CrossrefPubMedGoogle Scholar

  • Rebrina F., Skejo J., Lucic A. & Hudina S. 2015. Trait variability of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region reflects potential benefits and tradeoffs during dispersal. Aquat. Invasions 10 (1): 41–50. CrossrefGoogle Scholar

  • Schrimpf A., Pârvulescu L., Copilaş-Ciocianu D., Petrusek A. & Schulz R. 2012. Crayfish plague pathogen detected in the Danube Delta – a potential threat to freshwater biodiversity in southeastern Europe. Aquat. Invasions 7 (4): 503–510. CrossrefGoogle Scholar

  • Skurdal J. & Taugb⊘l T. 2002. Crayfish of commercial importance: Astacus, Part II, pp. 467–510. In: Holdich D.M. (ed.), Biology of Freshwater Crayfish, Blackwell Science, Oxford and Malden, Massachusetts, 702 pp. ISBN: 1405123494, 9781405123495Google Scholar

  • Snedden W.A. 1990. Determinants of male mating success in the temperate crayfish Orconectes rusticus: chela size and sperm competition. Behaviour 115 (1): 100–113. CrossrefGoogle Scholar

  • Soderback B. 1994. Interactions among juveniles of two freshwater crayfish species and a predatory fish. Oecologia 100 (3): 229–235. .CrossrefGoogle Scholar

  • Stebbing P.D., Bentley M.G. & Watson G.J. 2003. Mating behaviour and evidence for a female released courtship pheromone in the signal crayfish Pacifastacus leniusculus. J. Chem. Ecol. 29 (2): 465–475. CrossrefPubMedGoogle Scholar

  • Stocker A.M. & Huber R. 2001. Fighting strategies in crayfish Orconectes rusticus (Decapoda, Cambaridae) differ with hunger state and the presence of food cues. Ethology 107 (8): 727–736. CrossrefGoogle Scholar

  • Václavík T. & Meentemeyer R.K. 2012. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 18 (1): 73–83. CrossrefGoogle Scholar

  • Vorburger C. & Ribi G. 1999. Aggression and competition for shelter between a native and an introduced crayfish in Europe. Freshwater Biol. 42 (1): 111–119. CrossrefGoogle Scholar

  • Walles B., Troost K., van den Ende D., Nieuwhof S., Smaal A.C. & Ysebaert T. 2016. From artificial structures to self-sustaining oyster reefs. J. Sea Res. 108: 1–9. CrossrefGoogle Scholar

About the article

Received: 2017-01-27

Accepted: 2017-06-16

Published Online: 2017-08-31

Published in Print: 2017-08-28

Citation Information: Biologia, Volume 72, Issue 8, Pages 877–885, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0094.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in