Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 72, Issue 8


The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line

Tanja Matijevic Glavan
  • Corresponding author
  • Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martina Mikulandra
  • Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
  • Department of Radiotherapy and Medical Oncology, University Hospital for Tumors, University Hospital Centre Sisters of Mercy, Ilica 197, 10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-31 | DOI: https://doi.org/10.1515/biolog-2017-0103


Toll-like receptor 3 (TLR3) belongs to a family of TLRs, which are activated by ligands of bacterial and viral origin. Following ligation, TLRs induce different cellular responses including immune response, apoptosis, cell proliferation, cell migration, etc. TLR3 is induced by dsRNA or its analogue poly (I:C). In our previous research, we have noticed the morphological change in Detroit 562 cells after poly (I:C) stimulation resulting in mesenchymal phenotype. Here we have studied the pathways involved in the observed phenomenon by analyzing cell morphometric parameters. We have demonstrated that the observed changed morphology is not a consequence of increased apoptosis. Rho inhibitor also did not abrogate the induced morphological change, however, it induced the formation of short sheet-like sprouts and the combination of Rho inhibitor and poly (I:C) induced lamellipodia-like structures and more filopodia-like thin antennae sprouts. Finally, we have shown that Rac1 activation and epithelial to mesenchymal transition (EMT) markers (vimentin, fibronectin and Snail) are increased after poly (I:C) stimulation. Since we have previously shown increased migration of Detroit 562 cells after poly (I:C) stimulation, we conclude here that this and the morphological change are the result of EMT and Rac1 activation.

Key words: poly (I:C); toll-like receptor 3; morphology; epithelial to mesenchymal transition; migration; Rac1


  • Akira S., Takeda K. & Kaisho T. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity Nat. Immunol. 2: 675–680.Google Scholar

  • Arbibe L., Mira J.P., Teusch N., Kline L., Guha M., Mackman N., Godowski P.J., Ulevitch R.J. & Knaus U.G. 2000. Tolllike receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nat. Immunol. 1: 533–540.CrossrefGoogle Scholar

  • Bossy-Wetzel E., Bakiri L. & Yaniv M. 1997. Induction of apoptosis by the transcription factor c-Jun. EMBO J. 16: 1695–1709.PubMedCrossrefGoogle Scholar

  • Cao J., Chiarelli C., Richman O., Zarrabi K., Kozarekar P. & Zucker S. 2008. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J. Biol. Chem. 283: 6232–6240.Web of SciencePubMedCrossrefGoogle Scholar

  • Chen L.Y., Zuraw B.L., Liu F.T., Huang S. & Pan Z.K. 2002. IL-1 receptor-associated kinase and low molecular weight GTPase RhoA signal molecules are required for bacterial lipopolysaccharide-induced cytokine gene transcription. J. Immunol. 169: 3934–3939.PubMedCrossrefGoogle Scholar

  • Chen X., Cheng H., Pan T., Liu Y., Su Y., Ren C., Huang D., Zha X. & Liang C. 2015. mTOR regulate EMT through RhoA and Rac1 pathway in prostate cancer. Mol. Carcinog. 54: 1086–1095.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Comstock A.T., Ganesan S., Chattoraj A., Faris A.N., Margolis B.L., Hershenson M.B. & Sajjan U.S. 2011. Rhinovirusinduced barrier dysfunction in polarized airway epithelial cells is mediated by NADPH oxidase 1. J. Virol. 85: 6795–6808.CrossrefPubMedGoogle Scholar

  • Evers E.E., Zondag G.C., Malliri A., Price L.S., ten Klooster J.P., van der Kammen R.A. & Collard J.G. 2000. Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 36: 1269–1274.CrossrefPubMedGoogle Scholar

  • Fang D., Chen H., Zhu J.Y., Wang W., Teng Y., Ding H.F., Jing Q., Su S.B. & Huang S. 2017. Epithelial-mesenchymal transition of ovarian cancer cells is sustained by Rac1 through simultaneous activation of MEK1/2 and Src signaling pathways. Oncogene 36: 1546–1558.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Fukata M., Nakagawa M. & Kaibuchi K. 2003. Roles of Rhofamily GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15: 590–597.PubMedCrossrefGoogle Scholar

  • Goto Y., Arigami T., Kitago M., Nguyen S.L., Narita N., Ferrone S., Morton D.L., Irie R.F. & Hoon D.S. 2008. Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol. Cancer Ther. 7: 3642–3653.Web of SciencePubMedCrossrefGoogle Scholar

  • Gulhati P., Bowen K.A., Liu J., Stevens, P.D., Rychahou P.G., Chen M., Lee E.Y., Weiss H.L., O’Connor K.L., Gao T. & Evers B.M. 2011. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71: 3246–3256.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Ilvesaro J.M., Merrell M.A., Swain T.M., Davidson J., Zayzafoon M., Harris K.W. & Selander K.S. 2007. Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 67: 774–781.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jiang D., Li D., Cao L., Wang L., Zhu S., Xu T., Wang C. & Pan D. 2014. Positive feedback regulation of proliferation in vascular smooth muscle cells stimulated by lipopolysaccharide is mediated through the TLR 4/Rac1/Akt pathway. PLoS One 9: e92398.CrossrefWeb of SciencePubMedGoogle Scholar

  • Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T. & Akira S. 2008. Length-dependent recognition of doublestranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205: 1601–1610.CrossrefGoogle Scholar

  • Kelly M.G., Alvero A.B., Chen R., Silasi D.A., Abrahams V.M., Chan S., Visintin I., Rutherford T. & Mor G. 2006. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 66: 3859–3868.CrossrefPubMedGoogle Scholar

  • Kim W.Y., Lee J.W., Choi J.J., Choi C.H., Kim, T.J., Kim B.G., Song S.Y. & Bae D.S. 2008. Increased expression of Toll-like receptor 5 during progression of cervical neoplasia. Int. J. Gynecol. Cancer 18: 300–305.Web of SciencePubMedCrossrefGoogle Scholar

  • Kopp E.B. & Medzhitov R. 1999. The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol. 11: 13–18.PubMedCrossrefGoogle Scholar

  • Lee J.M., Dedhar S., Kalluri R. & Thompson E.W. 2006. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172: 973–981.CrossrefPubMedGoogle Scholar

  • Lu Z., Jiang G., Blume-Jensen P. & Hunter T. 2001. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol. Cell. Biol. 21: 4016–4031.PubMedCrossrefGoogle Scholar

  • Mandell K.J., Babbin B.A., Nusrat A. & Parkos C.A. 2005. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. J. Biol. Chem. 280: 11665–11674.PubMedCrossrefGoogle Scholar

  • Manukyan M., Nalbant P., Luxen, S., Hahn K.M. & Knaus U.G. 2009. RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-kappa B. J. Immunol. 182: 3522–3529.CrossrefWeb of SciencePubMedGoogle Scholar

  • Matijevic Glavan T., Cipak Gasparovic A., Vérillaud B., Busson P. & Pavelic J. 2017. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol. Carcinog. 56: 1214–1226.CrossrefWeb of SciencePubMedGoogle Scholar

  • Matijevic T., Marjanovic M. & Pavelic J. 2009. Functionally active toll-like receptor 3 on human primary and metastatic cancer cells. Scand. J. Immunol. 70: 18–24.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Matijevic T. & Pavelic J. 2011. The dual role of TLR3 in metastatic cell line. Clin. Exp. Metastasis 28: 701–712.PubMedCrossrefWeb of ScienceGoogle Scholar

  • McCall K.D., Harii N., Lewis C.J., Malgor R., Kim W.B., Saji M., Kohn A.D., Moon R.T. & Kohn L.D. 2007. High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration. Endocrinology 148: 4226–4237.PubMedWeb of ScienceCrossrefGoogle Scholar

  • McGarry T., Veale D.J., Gao W., Orr C., Fearon U. & Connolly M. 2015. Toll-like receptor 2 (TLR2) induces migration and invasive mechanisms in rheumatoid arthritis. Arthritis Res. Ther. 17: 153.Web of SciencePubMedCrossrefGoogle Scholar

  • Moon S.Y. & Zheng Y. 2003. Rho GTPase-activating proteins in cell regulation. Trends Cell. Biol. 13: 13–22.CrossrefPubMedGoogle Scholar

  • Navarro L. & David M. 1999. p38-dependent activation of interferon regulatory factor 3 by lipopolysaccharide. J. Biol. Chem. 274: 35535–35538.CrossrefPubMedGoogle Scholar

  • Nelson A.M., Reddy S.K., Ratliff T.S., Hossain M.Z., Katseff A.S., Zhu A.S., Chang E, Resnik S.R., Page C., Kim D., Whittam A.J., Miller L.S. & Garza L.A. 2015. dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell. 17: 139–151.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Nishiyama T., Sasaki T., Takaishi K., Kato M., Yaku H., Araki K., Matsuura Y. & Takai Y. 1994. rac p21 is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol. Cell. Biol. 14: 2447–2456.PubMedCrossrefGoogle Scholar

  • Paone A., Galli R., Gabellini C., Lukashev D., Starace D., Gorlach A., De Cesaris P., Ziparo E., Del Bufalo D., Sitkovsky M.V., Filippini A. & Riccioli A. 2010. Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1 alpha. Neoplasia 12: 539–549.CrossrefWeb of SciencePubMedGoogle Scholar

  • Paterson H.F., Self A.J., Garrett M.D., Just I., Aktories K. & Hall A. 1990. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J. Cell. Biol. 111: 1001–1007.CrossrefPubMedGoogle Scholar

  • Radisky E.S. & Radisky D.C. 2010. Matrix metalloproteinaseinduced epithelial-mesenchymal transition in breast cancer. J. Mammary Gland. Biol. Neoplasia 15: 201–212.CrossrefPubMedGoogle Scholar

  • Ridley A.J. & Hall A. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399.PubMedCrossrefGoogle Scholar

  • Salaun B., Coste I., Rissoan M.C., Lebecque S.J. & Renno T. 2006. TLR3 can directly trigger apoptosis in human cancer cells. J. Immunol. 176: 4894–4901.CrossrefPubMedGoogle Scholar

  • Salaun B., Lebecque S., Matikainen S., Rimoldi D. & Romero P. 2007. Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin. Cancer Res. 13: 4565–4574.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Sanz-Moreno V., Gadea G., Ahn J., Paterson H., Marra P., Pinner S., Sahai E. & Marshall C.J. 2008. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135: 510–523.CrossrefWeb of SciencePubMedGoogle Scholar

  • Schwartz A.L., Malgor R., Dickerson E., Weeraratna A.T., Slominski A., Wortsman J., Harii N., Kohn A.D., Moon R.T., Schwartz F.L., Goetz D.J., Kohn L.D. & McCall K.D. 2009. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin. Cancer Res. 15: 4114–4122.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Takaishi K., Sasaki T., Kato M., Yamochi W., Kuroda S., Nakamura T., Takeichi M. & Takai Y. 1994. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGFinduced cell motility. Oncogene 9: 273–279.Google Scholar

  • Teusch N., Lombardo E., Eddleston J. & Knaus U.G. 2004. The low molecular weight GTPase RhoA and atypical protein kinase Czeta are required for TLR2-mediated gene transcription. J. Immunol. 173: 507–514.CrossrefPubMedGoogle Scholar

  • Tian L., Li L., Xing W., Li R., Pei C., Dong X., Fu Y., Gu C., Guo X., Jia Y., Wang G., Wang J., Li B., Ren H. & Xu H. 2015. IRGM1 enhances B16 melanoma cell metastasis through PI3K-Rac1 mediated epithelial mesenchymal transition. Sci. Rep. 5: 12357.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Town T., Jeng D., Alexopoulou L., Tan J. & Flavell R.A. 2006. Microglia recognize double-stranded RNA via TLR3. J. Immunol. 176: 3804–3812.CrossrefPubMedGoogle Scholar

  • Zhang F.X., Kirschning C.J., Mancinelli R., Xu X.P., Jin Y., Faure E., Mantovani A., Rothe M., Muzio M. & Arditi M. 1999. Bacterial lipopolysaccharide activates nuclear factorkappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274: 7611–7614.CrossrefGoogle Scholar

About the article

Received: 2017-02-15

Accepted: 2017-08-17

Published Online: 2017-08-31

Published in Print: 2017-08-28

Citation Information: Biologia, Volume 72, Issue 8, Pages 954–960, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0103.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in