Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 8

Issues

Seedling emergence through soil surface seals under laboratory conditions: effect of mechanical impedance and seal moisture

M. Teresa Mas
  • Department of Agri-Food Engineering and Biotechnology, c/ Esteve Terradas 8. Edifici ESAB, Universitat Politècnica de Catalunya. 08860-Castelldefels, Barcelona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antoni M.C. Verdú
  • Department of Agri-Food Engineering and Biotechnology, c/ Esteve Terradas 8. Edifici ESAB, Universitat Politècnica de Catalunya. 08860-Castelldefels, Barcelona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Ginovart
  • Department of Mathematics, c/ Esteve Terradas 8. Edifici ESAB, Universitat Politècnica de Catalunya. 08860-Castelldefels, Barcelona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ramon Josa
  • Department of Agri-Food Engineering and Biotechnology, c/ Esteve Terradas 8. Edifici ESAB, Universitat Politècnica de Catalunya. 08860-Castelldefels, Barcelona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-31 | DOI: https://doi.org/10.1515/biolog-2017-0105

Abstract

It is well known that soil sealing strongly affects seedling emergence. The effect of soil sealing on the emergence of flax and turnip seedlings was studied in the laboratory. Seeds were sown in pots, watered, then covered with loamy soil and water was added. Three different doses of water were tested. Soil sealing was obtained with a paste of soil mixed with distilled water, added to each pot as a thick homogeneous, continuous and isotropic layer. The initial water content of the seal was measured. When seedling emergence was observed (or at the end of the experiment in the case of event failure), seal strength was measured in situ by a firmness pressure tester (used as a penetrometer). Relationships between water loss and initial moisture of the seal versus mechanical impedance were obtained. Differences in emergence success between species depended on the initial soil water content as well as on the initial seal moisture. A model of seedling emergence success of the two species, flax and turnip, as a function of the initial seal moisture content was obtained using a binary logistic regression model.

Key words: Linum usitatissimum; Brassica rapa; loamy soil; soil seal; water content

References

  • Agassi M., Shainberg I. & Morin J. 1981. Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation. Soil Sci. Soc. Am. J. 45: 848–851.CrossrefGoogle Scholar

  • Al–Ani A., Bruzau F., Raymond P., Saint–Ges V., Leblanc J.M. & Pradet A. 1985. Germination, respiration and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiol. 79: 885–890.PubMedCrossrefGoogle Scholar

  • Arndt W. 1965. The nature of the mechanical impedance to seedlings by soil surface seals. Aust. J. Soil Res. 3: 45–54.CrossrefGoogle Scholar

  • Aubertot J.–N., Dürr C., Richard G., Souty N. & Duval Y. 2002. Are penetrometer measurements useful in predicting emergence of sugar beet (Beta vulgaris L.) seedlings through a crust? Plant Soil 241: 177–186.CrossrefGoogle Scholar

  • Awadhwal N.K. & Thierstein G.E. 1985. Soil crust and its impact on crop establishment: a review. Soil Till. Res. 5: 289–302.CrossrefGoogle Scholar

  • Belnap J., Welter J.R., Grimm N.B., Barger N. & Ludwig J.A. 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86: 298–307.CrossrefGoogle Scholar

  • Bengoechea G. & Gomez–Campo C. 1975. Algunos caracteres de la semilla en la tribu Brassicaceae. Anal. Inst. Bot. Cavanilles 32: 793–841.Google Scholar

  • Bouzaziz A., Souty N. & Hicks D. 1990. Emergence force exerted by wheat seedling. Soil Till. Res. 17: 211–219.CrossrefGoogle Scholar

  • Cerdan O., Souchère V., Lecomte V., Couturier A. & Le Bissonnais Y. 2001. Incorporating soil surface crusting processes in an expert based runoff model: sealing and transfer by runoff and erosion related to agricultural management. Catena 46: 189–205.Google Scholar

  • Corner E.J.H. 1976. The seeds of Dicotyledons. Vol I. Cambridge University Press, Cambridge, U.K., 320 pp.Google Scholar

  • Crawford R.M.M. 1992. Oxygen availability as an ecological limit to plant distribution, pp 93–185. In Begon M. & Fitter A.H. (eds) Advances in Ecological Research Vol. 23, Academic Press.Google Scholar

  • Forbes J.C. & Watson D. 1992. Plants in agriculture. Cambridge University Press, Cambridge, U.K., 355 pp.Google Scholar

  • Fox D.M., Bryan R.B. & Fox C.A. 2004. Changes in pore characteristics with depth for structural crusts. Geoderma 120: 109–120.CrossrefGoogle Scholar

  • Gallardo–Carrera A., Dürr C., Herbin M., Duval Y. & Lingrand J. 2006. Analysis of the surface crack pattern of seedbeds in a silt loam soil, pp 79–85. In Albrechts C., Horn R., Fleige H., Peth S & Peng X. (eds) Soil Management for Sustainability. Advances in GeoEcology 38. Catena Verlag GMBH, Reiskirchen, Germany.Google Scholar

  • Gallardo–Carrera A., Léonard J., Duval Y. & Dürr C. 2007. Effects of seedbed structure and water content at sowing on the development of soil surface crusting under rainfall. Soil Till. Res. 95: 207–217.CrossrefWeb of ScienceGoogle Scholar

  • Goyal M., Drew L. & Carpenter T. 1982 Analytical prediction of seedling emergence force. Transactions of ASAE 25: 38–41.CrossrefGoogle Scholar

  • Haig D. & Westoby M. 1988. Inclusive fitness, seed resources and maternal care, pp 60–79. In Lovett–Doust J. & Lovett–Doust L. (eds) Plant reproduction ecology: patterns and strategies, Oxford University Press, Oxford, 360 pp.Google Scholar

  • Kigel J. 1995. Seed germination in arid and semiarid regions, pp 645–699. In Kigel J. & Galili G. (eds) Seed development and germination. Marcel Dekker Inc., New York, U.S.A., 853 pp.Google Scholar

  • Maestre F.T., Bowkera M.A., Cantón Y., Castillo–Monroya A.P., Cortina J., Escolar C., Escudero A., Lázaro R. & Martínez I. 2011. Ecology and functional roles of biological soil crusts in semi–arid ecosystems of Spain. J. Arid Environ. 75: 1282– 129.CrossrefWeb of SciencePubMedGoogle Scholar

  • Minitab Inc. 2012. Minitab Statistical Software Version 17.2.1. Minitab Inc., State College, PA. URL http://www.minitab.com/.

  • Molina A., Josa R., Mas M.T., Verdú A.M.C., Llorens P., Aranda X., Savé R. & Biel C. 2016. The role of soil characteristics, soil tillage and drip irrigation in the timber production of a wild cherry orchard under Mediterranean conditions. Eur. J. Agron. 72: 20–27.CrossrefWeb of ScienceGoogle Scholar

  • Nuttall W.F. 1982. The effect of seeding depth, soil moisture regime, and crust strength on emergence of rape cultivars. Agron. J. 74: 1018–1022.CrossrefGoogle Scholar

  • Rapp I., Shainberg I. & Banin A. 2000. Evaporation and crust impedance role in seedling emergence. Soil Sci. 165: 354–364.CrossrefGoogle Scholar

  • Singer M.J. 1991. Physical properties of arid region soils. In Skujins J. (ed.) Semiarid lands and deserts, soil resource and reclamation. Marcel Dekker Inc., New York, U.S.A., 648 pp.Google Scholar

  • Singer M.J. & Le Bissonnais Y. 1998. Importance of surface sealing in the erosion of some soils from a Mediterranean climate. Geomorphology 24: 79–85.CrossrefGoogle Scholar

  • Souty N. & Rode C. 1993. Emergence of sugar beet seedlings from under different obstacles. Eur. J. Agron. 2: 213–221.CrossrefGoogle Scholar

  • Souty N. & Rode C. 1994. La levée des plantules au champ: un problème de mécanique? Secher. 5: 13–22.Google Scholar

  • Sumner M.E. 1992. The electrical double layer and clay dispersion. In Sumner M.E. & Stewart B.A. (eds) Advances in Soil Science. Soil Crusting–Chemical and Physical Processes, Boca Raton, Lewis Publishers.Google Scholar

  • Tamet V., Souty N. & Rode C. 1995. Emergence des plantules de carotte (Daucus carota L.) sous des obstacles mécaniques superficiels. Agronomie 15: 109–121.CrossrefGoogle Scholar

  • Valentin C. & Bresson L.M. 1992. Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma 55: 225–245.CrossrefGoogle Scholar

About the article

Received: 2016-11-11

Accepted: 2017-01-12

Published Online: 2017-08-31

Published in Print: 2017-08-28


Citation Information: Biologia, Volume 72, Issue 8, Pages 862–868, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0105.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in