Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 8

Issues

Terbufos sulfone aggravates kidney damage in STZ-induced diabetic rats

Syed Muhammad Nurulain
  • Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Department of Biosciences, COMSATS-Institute of Information Technology, Islamabad, Pakistan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shreesh Ojha
  • Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed Shafiullah
  • Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Javed Yasin
  • Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tayyaba Yasmin / Tariq Saeed
  • Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ernest Adeghate
  • Corresponding author
  • Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-31 | DOI: https://doi.org/10.1515/biolog-2017-0106

Abstract

The consequences of chronic exposure of organophosphorus compounds (OPCs) on diabetic subjects have been seldom reported. The aim of the present study was to assess the impact of non-lethal dose of terbufos sulfone (TS), an organophosphate, on the kidney of non-diabetic and streptozotocin (STZ)- induced diabetic rats. The diabetogenic effect of TS was also examined. Male Wistar rats were treated for two weeks with 130 µg/kg body weight/day of TS. This dose was 1/20 of LD50 and produces less than 10% inhibition of acetylcholinesterase (AChE) in non-diabetic rats. No observable symptoms of poisoning were noted. Weight, glucose and in vivo red blood cell (RBC)-AChE were measured on day 7 and 15 of the study. Serum biochemistry, urine analysis, and transmission electron microscopy (TEM) of kidney were performed to assess the toxicity at the end of the 15-day study. Our results did not reveal diabetogenic effect of TS treatment. Blood glucose level was significantly increased and RBC-AChE activity was significantly decreased in diabetic-TS treated rats compared to untreated diabetic and normal control animals. TEM of kidney revealed structural damage to kidney, which was more severe in diabetic-TS treated rats compared to controls. Toxicity to kidney by TS was further confirmed by urine and blood biochemistry. Our results conclude that non-lethal dose of TS aggravates the nephrotoxicity in diabetic rats. Further studies with other OPCs are needed to be able to generalize the diabetogenic effect of TS.

Key words: terbufos-sulfone; diabetes; red-blood-cell-acetylcholinesterase; nephrotoxicity; transmission electron microscopy

References

  • Adeghate E., Hameed R.S., Ponery A.S., Tariq S., Sheen R.S., Shaffiullah M. & Donáth T. 2010. Streptozotocin causes pancreatic beta cell failure via early and sustained biochemical and cellular alterations. Exp. Clin. Endocrinol. 118: 699–707.Web of ScienceCrossrefGoogle Scholar

  • Afshar S., Farshid A.A., Heidari R. & Ilkhanipour M. 2008. Histopathological changes in the liver and kidney tissues of Wistar albino rat exposed to fenitrothion. Toxicol. Ind. Health 24: 581–586.Web of ScienceCrossrefPubMedGoogle Scholar

  • Ben Amara I., Karray A., Hakim A., Ben Ali Y., Troudi A., Soudani N., Boudawara T., Zeghal K.M. & Zeghal N. 2013. Dimethoate induces kidney dysfunction, disrupts membranebound ATPases and confers cytotoxicity through DNA damage. Protective effects of vitamin E and selenium. Biol. Trace Elem. Res. 156: 230–242.CrossrefGoogle Scholar

  • Bloch-Shilderman E. & Levy A. 2007. Transient and reversible nephrotoxicity of sarin in rats. J. Appl. Toxicol. 27: 189–194.Web of SciencePubMedCrossrefGoogle Scholar

  • Bonner M.R., Williams B.A., Rusiecki J.A., Blair A., Freeman L.E.B., Hoppin J.A., Dosemeci M., Lubin J., Sandler D.P. & Alavanja M.C.R. 2010. Occupational exposure to terbufos and the incidence of cancer in the agricultural health study. Cancer Causes Control 21: 871–877.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Everett C.J. & Matheson E.M. 2010. Biomarkers of pesticide exposure and diabetes in the 1999-2004 national health and nutrition examination survey. Environ. Int. 36: 398–401.CrossrefWeb of SciencePubMedGoogle Scholar

  • Fornstrom C.B., Landrum P.F., Weisskopf C.P. & La Point T.W. 1997. Effects of terbufos on juvenile red swamp crayfish (Procambarus clarkii): differential routes of exposure. Environ. Toxicol. Chem. 16: 2514–2520.CrossrefGoogle Scholar

  • Hagar H.H., Azza H. & Fahmy. 2002. A biochemical, histochemical, and ultrastructural evaluation of the effect of dimethoate intoxication on rat pancreas. Toxicol. Lett. 133: 161–170.CrossrefPubMedGoogle Scholar

  • Hectors T.L.M., Vanparys C., van der Ven K., Martens G.A., Jorens P.G., Van Gaal L.F., Covaci A., De Coen W. & Blust R. 2011. Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia 54: 1273–1290.CrossrefWeb of SciencePubMedGoogle Scholar

  • Ivanac-Janković R., Lovčić V., Magaš S., Šklebar D. & Kes P. 2015. The novella about diabetic nephropathy. Acta Clin. Croat. 54: 83–91.PubMedGoogle Scholar

  • Jaacks L.M. & Staimez L.R. 2015. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: a systematic review. Environ. Int. 76: 57–70.CrossrefWeb of ScienceGoogle Scholar

  • Jayasumana C., Paranagama P., Agampodi S., Wijewardane C., Gunatilake S. & Siribaddana S. 2015. Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 14: 6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Joshi A.K. & Rajini P.S. 2009. Reversible hyperglycemia in rats following acute exposure to acephate, an organophosphorus insecticide: role of gluconeogenesis. Toxicology 257: 40–45.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kalender S., Kalender Y., Durak D., Ogutcu A., Uzunhisarcikli M., Cevrimli B. & Yildirim M. 2007. Methyl parathion induced nephrotoxicity in male rats and protective role of vitamins C and E. Pestic. Biochem. Physiol. 88: 213–218.CrossrefWeb of ScienceGoogle Scholar

  • Kamath V. & Rajini P.S. 2007. Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication. Toxicology 231: 137–146.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Knapton R.W. & Mineau P. 1995. Effects of granular formulations of terbufos and fonofos applied to cornfields on mortality and reproductive success of songbirds. Ecotoxicology 4: 138–153.PubMedCrossrefGoogle Scholar

  • Lim Y.P., Lin C.L., Hung D.Z., Ma W.C., Lin Y.N. & Kao C.H. 2015. Increased risk of deep vein thrombosis and pulmonary thromboembolism in patients with organophosphate intoxication: a nationwide prospective cohort study. Medicine (Baltimore) 94: e341.Web of SciencePubMedGoogle Scholar

  • Liu S.H., Lin J.L., Shen H.L., Chang C.C., Huang W.H., Weng C.H., Hsu C.W., Wang I.K., Liang C.C. & Yen T.H. 2014. Acute large-dose exposure to organophosphates in patients with and without diabetes mellitus: analysis of mortality rate and new-onset diabetes mellitus. Environ. Health 13: 11.Web of SciencePubMedCrossrefGoogle Scholar

  • Malekirad A.A., Faghih M., Mirabdollahi M., Kiani M., Fathi A. & Abdollahi M. 2013. Neurocognitive, mental health, and glucose disorders in farmers exposed to organophosphorus pesticides. Arh. Hig. Rada Toksikol. 64: 1–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • Mohineesh, Raj J., Rajvanshi A.C., Dogra T.D. & Raina A. 2014. Effect of acute exposure of triazophos on oxidative stress and histopathological alterations in liver, kidney and brain ofWistar rats. Indian J. Exp. Biol. 52: 814–819.PubMedGoogle Scholar

  • Mohssen M. 2001. Biochemical and histopathological changes in serum creatinine and kidney induced by inhalation of Thimet (Phorate) in male Swiss albino mouse, Mus musculus. Environ. Res. 87: 31–36.PubMedCrossrefGoogle Scholar

  • Montgomery M.P., Kamel F., Saldana T.M., Alavanja M.C.R. & Sandler D.P. 2008. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993-2003. Am. J. Epidemiol. 167: 1235–1246.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Mostafalou S. & Abdollahi M. 2013. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 268: 157–177.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Nagaraju R., Joshi A.K.R. & Rajini P.S. 2015. Organophosphorus insecticide, monocrotophos, possesses the propensity to induce insulin resistance in rats on chronic exposure. J. Diabetes 7: 47–59.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Nili-Ahmadabadi A., Pourkhalili N., Fouladdel S., Pakzad M., Mostafalou S., Hassani S., Baeeri M., Azizi E., Ostad S.N., Hosseini R., Sharifzadeh M. & Abdollahi M. 2013. On the biochemical and molecular mechanisms by which malathion induces dysfunction in pancreatic islets in vivo and in vitro. Pestic. Biochem. Physiol. 106: 51–60.Web of ScienceCrossrefGoogle Scholar

  • Nurulain S.M., Adeghate E., Sheikh A., Yasin J., Kamal M.A., Sharma C., Adem A. & Ojha S. 2014. Sub-chronic exposure of non-observable adverse effect dose of terbufos sulfone: neuroinflammation in diabetic and non-diabetic rats. CNS Neurol. Disord. Drug Targets 13: 1397–1405.CrossrefGoogle Scholar

  • Nurulain S.M., Petroianu G., Shafiullah M., Kalász H., Oz M., Saeed T., Adem A. & Adeghate E. 2013. Sub-chronic exposure to paraoxon neither induces nor exacerbates diabetes mellitus in Wistar rat. J. Appl. Toxicol. 33: 1036–1043.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Pakzad M., Fouladdel S., Nili-Ahmadabadi A., Pourkhalili N., Baeeri M., Azizi E., Sabzevari O., Ostad S.N. & Abdollahi M. 2013. Sublethal exposures of diazinon alters glucose homostasis in Wistar rats: biochemical and molecular evidences of oxidative stress in adipose tissues. Pestic. Biochem. Physiol. 105: 57–61.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Raafat N., Abass M.A. & Salem H.M. 2012. Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clin. Biochem. 45: 1591–1595.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Rezg R., Mornagui B., Benahmed M., Chouchane S.G., Belhajhmida N., Abdeladhim M., Kamoun A., El-fazaa S. & Gharbi N. 2010. Malathion exposure modulates hypothalamic gene expression and induces dyslipedemia in Wistar rats. Food Chem. Toxicol. 48: 1473–1477.Web of ScienceCrossrefPubMedGoogle Scholar

  • Saldana T.M., Basso O., Hoppin J.A., Baird D.D., Knott C., Blair A., Alavanja M.C.R. & Sandler D.P. 2007. Pesticide exposure and self-reported gestational diabetes mellitus in the Agricultural Health Study. Diabetes Care 30: 529–534.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Shah M.D. & Iqbal M. 2010. Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem. Toxicol. 48: 3345–3353.Google Scholar

  • Sharma D. & Sangha G.K. 2014. Triazophos induced oxidative stress and histomorphological changes in liver and kidney of female albino rats. Pestic. Biochem. Physiol. 110: 71–80.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Slotkin T.A. 2011. Does early-life exposure to organophosphate insecticides lead to prediabetes and obesity? Reprod. Toxicol. 31: 297–301.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Suratman S., Edwards J.W. & Babina K. 2015. Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects. Rev. Environ. Health 30: 65–79.PubMedGoogle Scholar

  • Teimouri F., Amirkabirian N., Esmaily H., Mohammadirad A., Aliahmadi A. & Abdollahi M. 2006. Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress. Hum. Exp. Toxicol. 25: 697–703.CrossrefPubMedGoogle Scholar

  • Wedin G.P., Pennente C.M. & Sachdev S.S. 1984. Renal involvement in organophosphate poisoning. JAMA 252: 1408.PubMedGoogle Scholar

  • Zhang Y., Ren M., Li J., Wei Q., Ren Z., Lv J., Niu F. & Ren S. 2014. Does omethoate have the potential to cause insulin resistance? Environ. Toxicol. Pharmacol. 37: 284–290.CrossrefGoogle Scholar

About the article

Received: 2016-11-04

Accepted: 2017-08-19

Published Online: 2017-08-31

Published in Print: 2017-08-28


Declaration of conflict of interests The authors declare that there is no conflict of interest.


Citation Information: Biologia, Volume 72, Issue 8, Pages 946–953, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0106.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in