Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 72, Issue 8


Terbufos sulfone aggravates kidney damage in STZ-induced diabetic rats

Syed Muhammad Nurulain
  • Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Department of Biosciences, COMSATS-Institute of Information Technology, Islamabad, Pakistan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shreesh Ojha
  • Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed Shafiullah
  • Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Javed Yasin
  • Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tayyaba Yasmin / Tariq Saeed
  • Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ernest Adeghate
  • Corresponding author
  • Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-31 | DOI: https://doi.org/10.1515/biolog-2017-0106


The consequences of chronic exposure of organophosphorus compounds (OPCs) on diabetic subjects have been seldom reported. The aim of the present study was to assess the impact of non-lethal dose of terbufos sulfone (TS), an organophosphate, on the kidney of non-diabetic and streptozotocin (STZ)- induced diabetic rats. The diabetogenic effect of TS was also examined. Male Wistar rats were treated for two weeks with 130 µg/kg body weight/day of TS. This dose was 1/20 of LD50 and produces less than 10% inhibition of acetylcholinesterase (AChE) in non-diabetic rats. No observable symptoms of poisoning were noted. Weight, glucose and in vivo red blood cell (RBC)-AChE were measured on day 7 and 15 of the study. Serum biochemistry, urine analysis, and transmission electron microscopy (TEM) of kidney were performed to assess the toxicity at the end of the 15-day study. Our results did not reveal diabetogenic effect of TS treatment. Blood glucose level was significantly increased and RBC-AChE activity was significantly decreased in diabetic-TS treated rats compared to untreated diabetic and normal control animals. TEM of kidney revealed structural damage to kidney, which was more severe in diabetic-TS treated rats compared to controls. Toxicity to kidney by TS was further confirmed by urine and blood biochemistry. Our results conclude that non-lethal dose of TS aggravates the nephrotoxicity in diabetic rats. Further studies with other OPCs are needed to be able to generalize the diabetogenic effect of TS.

Key words: terbufos-sulfone; diabetes; red-blood-cell-acetylcholinesterase; nephrotoxicity; transmission electron microscopy


  • Adeghate E., Hameed R.S., Ponery A.S., Tariq S., Sheen R.S., Shaffiullah M. & Donáth T. 2010. Streptozotocin causes pancreatic beta cell failure via early and sustained biochemical and cellular alterations. Exp. Clin. Endocrinol. 118: 699–707.Web of ScienceCrossrefGoogle Scholar

  • Afshar S., Farshid A.A., Heidari R. & Ilkhanipour M. 2008. Histopathological changes in the liver and kidney tissues of Wistar albino rat exposed to fenitrothion. Toxicol. Ind. Health 24: 581–586.Web of ScienceCrossrefPubMedGoogle Scholar

  • Ben Amara I., Karray A., Hakim A., Ben Ali Y., Troudi A., Soudani N., Boudawara T., Zeghal K.M. & Zeghal N. 2013. Dimethoate induces kidney dysfunction, disrupts membranebound ATPases and confers cytotoxicity through DNA damage. Protective effects of vitamin E and selenium. Biol. Trace Elem. Res. 156: 230–242.CrossrefGoogle Scholar

  • Bloch-Shilderman E. & Levy A. 2007. Transient and reversible nephrotoxicity of sarin in rats. J. Appl. Toxicol. 27: 189–194.Web of SciencePubMedCrossrefGoogle Scholar

  • Bonner M.R., Williams B.A., Rusiecki J.A., Blair A., Freeman L.E.B., Hoppin J.A., Dosemeci M., Lubin J., Sandler D.P. & Alavanja M.C.R. 2010. Occupational exposure to terbufos and the incidence of cancer in the agricultural health study. Cancer Causes Control 21: 871–877.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Everett C.J. & Matheson E.M. 2010. Biomarkers of pesticide exposure and diabetes in the 1999-2004 national health and nutrition examination survey. Environ. Int. 36: 398–401.CrossrefWeb of SciencePubMedGoogle Scholar

  • Fornstrom C.B., Landrum P.F., Weisskopf C.P. & La Point T.W. 1997. Effects of terbufos on juvenile red swamp crayfish (Procambarus clarkii): differential routes of exposure. Environ. Toxicol. Chem. 16: 2514–2520.CrossrefGoogle Scholar

  • Hagar H.H., Azza H. & Fahmy. 2002. A biochemical, histochemical, and ultrastructural evaluation of the effect of dimethoate intoxication on rat pancreas. Toxicol. Lett. 133: 161–170.CrossrefPubMedGoogle Scholar

  • Hectors T.L.M., Vanparys C., van der Ven K., Martens G.A., Jorens P.G., Van Gaal L.F., Covaci A., De Coen W. & Blust R. 2011. Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia 54: 1273–1290.CrossrefWeb of SciencePubMedGoogle Scholar

  • Ivanac-Janković R., Lovčić V., Magaš S., Šklebar D. & Kes P. 2015. The novella about diabetic nephropathy. Acta Clin. Croat. 54: 83–91.PubMedGoogle Scholar

  • Jaacks L.M. & Staimez L.R. 2015. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: a systematic review. Environ. Int. 76: 57–70.CrossrefWeb of ScienceGoogle Scholar

  • Jayasumana C., Paranagama P., Agampodi S., Wijewardane C., Gunatilake S. & Siribaddana S. 2015. Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 14: 6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Joshi A.K. & Rajini P.S. 2009. Reversible hyperglycemia in rats following acute exposure to acephate, an organophosphorus insecticide: role of gluconeogenesis. Toxicology 257: 40–45.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kalender S., Kalender Y., Durak D., Ogutcu A., Uzunhisarcikli M., Cevrimli B. & Yildirim M. 2007. Methyl parathion induced nephrotoxicity in male rats and protective role of vitamins C and E. Pestic. Biochem. Physiol. 88: 213–218.CrossrefWeb of ScienceGoogle Scholar

  • Kamath V. & Rajini P.S. 2007. Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication. Toxicology 231: 137–146.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Knapton R.W. & Mineau P. 1995. Effects of granular formulations of terbufos and fonofos applied to cornfields on mortality and reproductive success of songbirds. Ecotoxicology 4: 138–153.PubMedCrossrefGoogle Scholar

  • Lim Y.P., Lin C.L., Hung D.Z., Ma W.C., Lin Y.N. & Kao C.H. 2015. Increased risk of deep vein thrombosis and pulmonary thromboembolism in patients with organophosphate intoxication: a nationwide prospective cohort study. Medicine (Baltimore) 94: e341.Web of SciencePubMedGoogle Scholar

  • Liu S.H., Lin J.L., Shen H.L., Chang C.C., Huang W.H., Weng C.H., Hsu C.W., Wang I.K., Liang C.C. & Yen T.H. 2014. Acute large-dose exposure to organophosphates in patients with and without diabetes mellitus: analysis of mortality rate and new-onset diabetes mellitus. Environ. Health 13: 11.Web of SciencePubMedCrossrefGoogle Scholar

  • Malekirad A.A., Faghih M., Mirabdollahi M., Kiani M., Fathi A. & Abdollahi M. 2013. Neurocognitive, mental health, and glucose disorders in farmers exposed to organophosphorus pesticides. Arh. Hig. Rada Toksikol. 64: 1–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • Mohineesh, Raj J., Rajvanshi A.C., Dogra T.D. & Raina A. 2014. Effect of acute exposure of triazophos on oxidative stress and histopathological alterations in liver, kidney and brain ofWistar rats. Indian J. Exp. Biol. 52: 814–819.PubMedGoogle Scholar

  • Mohssen M. 2001. Biochemical and histopathological changes in serum creatinine and kidney induced by inhalation of Thimet (Phorate) in male Swiss albino mouse, Mus musculus. Environ. Res. 87: 31–36.PubMedCrossrefGoogle Scholar

  • Montgomery M.P., Kamel F., Saldana T.M., Alavanja M.C.R. & Sandler D.P. 2008. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993-2003. Am. J. Epidemiol. 167: 1235–1246.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Mostafalou S. & Abdollahi M. 2013. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 268: 157–177.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Nagaraju R., Joshi A.K.R. & Rajini P.S. 2015. Organophosphorus insecticide, monocrotophos, possesses the propensity to induce insulin resistance in rats on chronic exposure. J. Diabetes 7: 47–59.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Nili-Ahmadabadi A., Pourkhalili N., Fouladdel S., Pakzad M., Mostafalou S., Hassani S., Baeeri M., Azizi E., Ostad S.N., Hosseini R., Sharifzadeh M. & Abdollahi M. 2013. On the biochemical and molecular mechanisms by which malathion induces dysfunction in pancreatic islets in vivo and in vitro. Pestic. Biochem. Physiol. 106: 51–60.Web of ScienceCrossrefGoogle Scholar

  • Nurulain S.M., Adeghate E., Sheikh A., Yasin J., Kamal M.A., Sharma C., Adem A. & Ojha S. 2014. Sub-chronic exposure of non-observable adverse effect dose of terbufos sulfone: neuroinflammation in diabetic and non-diabetic rats. CNS Neurol. Disord. Drug Targets 13: 1397–1405.CrossrefGoogle Scholar

  • Nurulain S.M., Petroianu G., Shafiullah M., Kalász H., Oz M., Saeed T., Adem A. & Adeghate E. 2013. Sub-chronic exposure to paraoxon neither induces nor exacerbates diabetes mellitus in Wistar rat. J. Appl. Toxicol. 33: 1036–1043.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Pakzad M., Fouladdel S., Nili-Ahmadabadi A., Pourkhalili N., Baeeri M., Azizi E., Sabzevari O., Ostad S.N. & Abdollahi M. 2013. Sublethal exposures of diazinon alters glucose homostasis in Wistar rats: biochemical and molecular evidences of oxidative stress in adipose tissues. Pestic. Biochem. Physiol. 105: 57–61.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Raafat N., Abass M.A. & Salem H.M. 2012. Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clin. Biochem. 45: 1591–1595.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Rezg R., Mornagui B., Benahmed M., Chouchane S.G., Belhajhmida N., Abdeladhim M., Kamoun A., El-fazaa S. & Gharbi N. 2010. Malathion exposure modulates hypothalamic gene expression and induces dyslipedemia in Wistar rats. Food Chem. Toxicol. 48: 1473–1477.Web of ScienceCrossrefPubMedGoogle Scholar

  • Saldana T.M., Basso O., Hoppin J.A., Baird D.D., Knott C., Blair A., Alavanja M.C.R. & Sandler D.P. 2007. Pesticide exposure and self-reported gestational diabetes mellitus in the Agricultural Health Study. Diabetes Care 30: 529–534.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Shah M.D. & Iqbal M. 2010. Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem. Toxicol. 48: 3345–3353.Google Scholar

  • Sharma D. & Sangha G.K. 2014. Triazophos induced oxidative stress and histomorphological changes in liver and kidney of female albino rats. Pestic. Biochem. Physiol. 110: 71–80.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Slotkin T.A. 2011. Does early-life exposure to organophosphate insecticides lead to prediabetes and obesity? Reprod. Toxicol. 31: 297–301.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Suratman S., Edwards J.W. & Babina K. 2015. Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects. Rev. Environ. Health 30: 65–79.PubMedGoogle Scholar

  • Teimouri F., Amirkabirian N., Esmaily H., Mohammadirad A., Aliahmadi A. & Abdollahi M. 2006. Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress. Hum. Exp. Toxicol. 25: 697–703.CrossrefPubMedGoogle Scholar

  • Wedin G.P., Pennente C.M. & Sachdev S.S. 1984. Renal involvement in organophosphate poisoning. JAMA 252: 1408.PubMedGoogle Scholar

  • Zhang Y., Ren M., Li J., Wei Q., Ren Z., Lv J., Niu F. & Ren S. 2014. Does omethoate have the potential to cause insulin resistance? Environ. Toxicol. Pharmacol. 37: 284–290.CrossrefGoogle Scholar

About the article

Received: 2016-11-04

Accepted: 2017-08-19

Published Online: 2017-08-31

Published in Print: 2017-08-28

Declaration of conflict of interests The authors declare that there is no conflict of interest.

Citation Information: Biologia, Volume 72, Issue 8, Pages 946–953, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0106.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in