Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 72, Issue 8


Two nuclei inside a single cardiac muscle cell. More questions than answers about the binucleation of cardiomyocytes

Michal Miko
  • Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Spitalska 24, SK-81372, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Kyselovic
  • Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-83232, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lubos Danisovic
  • Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Spitalska 24, SK-81372, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomas Barczi
  • Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Spitalska 24, SK-81372, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Polak
  • Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Spitalska 24, SK-81372, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivan Varga
  • Corresponding author
  • Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Spitalska 24, SK-81372, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-31 | DOI: https://doi.org/10.1515/biolog-2017-0107


Human cardiac muscle cells are the most physically energetic cells in the body, and according to various researchers they contain two nuclei in 25–40%. In humans, the heart during prenatal development consists mainly of cardiomyocytes with one nucleus. Just before birth, binucleation begins and can extend into early neonatal life. The physiological importance of binucleation is still poorly understood. In this critical review, we provide a summary of the latest research on binucleation of cardiac muscle cells, with special emphasis on the potential application of such knowledge to the fields of regenerative medicine. We summed up and discussed about ten possible biological arguments why binucleation may be beneficial for cardiac muscle cells as well as for the whole myocardium. These arguments include increase of gene expression, purposeful cell shaping, increase of metabolic activity, energy-saving growth and function, need for organ growth despite of telomere depletion, adaptation to stress (tissue regeneration), prevention of overgrowth – organ shaping, prevention of aneuploidy, terminally differentiated state (cardiomyocytes exit the cell cycle, end of proliferation activity); or, we hypothesize, binucleation is just an unwanted side product.

Key words: cardiomyocytes; binucleation; myocardial hypertrophy; myocardial regeneration


  • Aix E., Gutierrez-Gutierrez O., Sánchez-Ferrer C., Aguado T. & Flores I. 2016. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J. Cell. Biol. 213: 571–583.Web of ScienceCrossrefPubMedGoogle Scholar

  • Bageghni S.A., Frentzou G.A., Drinkhill M.J., Mansfield W., Coverley D. & Ainscough, J.F. 2017. Cardiomyocyte-specific expression of the nuclear matrix protein, CIZ1, stimulates production of mono-nucleated cells with an extended window of proliferation in the postnatal mouse heart. Biol. Open 6: 92–99.Web of SciencePubMedCrossrefGoogle Scholar

  • Bergmann O., Bhardwaj R.D., Bernard S., Zdunek S., Barnabe-Heider F., Walsh S., Zupicich J., Alkass K., Buchholz B.A. Druid H., Jovinge S. & Frisen J. 2009. Evidence for cardiomyocyte renewal in humans. Science 324: 98–102.Web of ScienceCrossrefPubMedGoogle Scholar

  • Brodsky V.Y., Sarkisov D.S., Arefyeva A.M., Panova N.W. & Gvasava, I.G. 1994. Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch. 424: 429–435.PubMedGoogle Scholar

  • Clubb F.J. Jr. & Bishop S.P. 1984. Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab. Invest. 50: 571–577.PubMedGoogle Scholar

  • D’Amato F. 1952. Polyploidy in the differentiation and function of tissues and cells in plants. A critical examination of the literature. Caryologia 4: 311–358.CrossrefGoogle Scholar

  • D’Amato F. 1989. Polyploidy in cell differentiation. Caryologia 42: 183–211.CrossrefGoogle Scholar

  • D’Avino P.P. 2009. How to scaffold the contractile ring for a safe cytokinesis – lessons from anillin-related proteins. J. Cell. Sci. 122: 1071–1079.CrossrefWeb of SciencePubMedGoogle Scholar

  • Elhelaly W.M., Lam N.T., Hamza M., Xia S. & Sadek H.A. 2016. Redox regulation of heart regeneration: an evolutionary tradeoff. Front. Cell. Dev. Biol. 4: 137.PubMedGoogle Scholar

  • Engel F.B., Schebesta M. & Keating M.T. 2006. Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell. Cardiol. 41: 601–612.CrossrefPubMedGoogle Scholar

  • Foglia M.J. & Poss K.D. 2016. Building and re-building the heart by cardiomyocyte proliferation. Development 143: 729–740.CrossrefWeb of SciencePubMedGoogle Scholar

  • Frawley L.E. & Orr-Weaver T.L. 2015. Polyploidy. Curr. Biol. 25: R353–R358.Google Scholar

  • Gansburgskii A.N. & Yaltsev A.V. 2004. Polyploidy of smooth myocytes in coronary arteries. Bull. Exp. Biol. Med. 138: 522–524.CrossrefPubMedGoogle Scholar

  • Geitler L. 1943. Die Bedeutung der Endomitose für die Krebscytologie und Jacobjs “heterotyp-genmutative” Geschwulsttheorie. Wilhelm Roux Arch. Entwickl. Mech. Org. 142: 301–310.CrossrefGoogle Scholar

  • Huang C.F., Chen Y.C., Yeh H.I. & Chen S.A. 2012. Mononucleated and binucleated cardiomyocytes in left atrium and pulmonary vein have different electrical activity and calcium dynamics. Progr. Biophys. Mol. Biol. 108: 64–73.CrossrefGoogle Scholar

  • Jonker S.S., Zhang L., Louey S., Giraud G.D., Thornburg K.L. & Faber J.J. 2007. Myocyte enlargement, differentiation and proliferation kinetics in the fetal sheep heart. J. Appl. Physiol. 102: 1130–1142.Web of SciencePubMedGoogle Scholar

  • Junatas K.L., Tonar Z., Kubíková T., Liška V., Pálek R., Mik P., Králíčková M. & Witter K. Stereological analysis of size and density of hepatocytes in the porcine liver. J. Anat. 230: 575–588.Web of SciencePubMedCrossrefGoogle Scholar

  • Katzberg A.A., Farmer B.B. & Harris R.A. 1977. The predominance of binucleation in isolated rat heart myocytes. Am. J. Anat. 149: 489–499.CrossrefPubMedGoogle Scholar

  • Kellerman S., Moore J.A., Zierhut W., Zimmer H.G., Campbell J. & Gerdes A.M. 1992. Nuclear DNA content and nucleation patterns in rat cardiac myocytes from different models of cardiac hypertrophy. J. Mol. Cell. Cardiol. 24: 497–505.CrossrefPubMedGoogle Scholar

  • Kondorosi E., Roudier F. & Gendreau, E. 2000. Plant cell-size control: growing by ploidy? Curr. Opin. Plant. Biol. 3: 488–492.PubMedCrossrefGoogle Scholar

  • Kusuzaki K., Takeshita H., Murata H., Hashiguchi S., Nozaki T., Emoto K., Ashihara T. & Hirasawa, Y. 2001. Acridine orange induces binucleation in chondrocytes. Osteoarthritis Cartilage 9: 147–151.PubMedCrossrefGoogle Scholar

  • Laflamme M.A., Myerson D., Saffitz J.E. & Murry C.E. 2002. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90: 634–640.CrossrefPubMedGoogle Scholar

  • Latella L., Sacco A., Pajalunga D., Tiainen M., Macera D., D’Angelo M., Felici A., Sacchi A. & Crescenzi M. 2001. Reconstitution of cyclin D1-associated kinase activity drives terminally differentiated cells into the cell cycle. Mol. Cell. Biol. 21: 5631–5643.CrossrefPubMedGoogle Scholar

  • Lee H.O., Davidson J.M. & Duronio R.J. 2009. Endoreplication: polyploidy with purpose. Genes Dev. 23: 2461–2477.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Li F., McNelis M.R., Lustig K. & Gerdes A.M. 1997a. Hyperplasia and hypertrophy of chicken cardiac myocytes during posthatching development. Am. J. Physiol. 273: R518–R526.Google Scholar

  • Li F., Wang X., Bunger P.C. & Gerdes A.M. 1997b. Formation of binucleated cardiac myocytes in rat heart: I. Role of actinmyosin contractile ring. J. Mol. Cell. Cardiol. 29: 1541–1551.CrossrefGoogle Scholar

  • Li F., Wang X., Capasso J.M. & Gerdes A.M. 1996. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28: 1737–1746.PubMedCrossrefGoogle Scholar

  • Li F., Wang X. & Gerdes A.M. 1997c. Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organisation. J. Mol. Cell. Cardiol. 29: 1553–1565.CrossrefGoogle Scholar

  • Linzbach A.J. 1976. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv. Cardiol. 18: 1–14.CrossrefPubMedGoogle Scholar

  • Meckert P.C., Rivello H.G., Vigliano C., González P., Favaloro R. & Laguens R. 2005. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc. Res. 67: 116–123.PubMedCrossrefGoogle Scholar

  • Mollova M., Bersell K., Walsh S., Savla J., Das L.T., Park S.Y. Silberstein L.E., Dos Remedios C.G., Graham D., Colan S. & Kühn B. 2013. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 110: 1446–1451.CrossrefGoogle Scholar

  • Olivetti G., Cigola E., Maestri R., Corradi D., Lagrasta C., Gambert S.R. & Anversa P. 1996. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell. Cardiol. 28: 1463–1477.PubMedCrossrefGoogle Scholar

  • Orr-Weaver T.L. 2015. When bigger is better: the role of polyploidy in organogenesis. Trends Genet. 31: 307–315.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Pampalona J., Frias C., Genesca A. & Tusell L. 2012. Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet. 8: e1002679.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Paradis A.N., Gay M.S. & Zhang, L. 2014. Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov. Today 19: 602–609.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Pasumarthi K.B. & Field L.J. 2002. Cardiomyocyte cell cycle regulation. Circ. Res. 90: 1044–1054.CrossrefPubMedGoogle Scholar

  • Piekny A.J. & Glotzer M. 2008. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr. Biol. 18: 30–36.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Polák Š, Žiaran S, Mištinová J, Bevízová K, Danišovič Ľ. & Varga I. 2012. Options for histological study of the structure and ultrastructure of human urinary bladder epithelium. Biologia 67: 1018–1025.Web of ScienceGoogle Scholar

  • Renner D. & Queisser W. 1988. Megakaryocyte polyploidy and maturation in chronic granulocytic leukemia. Acta Haematol. 80: 74–78.PubMedGoogle Scholar

  • Ribeiro A.A. 2006. Size and number of binucleate and mononucleate superior cervical ganglion neurons in young capybaras. Anat. Embryol. (Berl). 211: 607–617.PubMedCrossrefGoogle Scholar

  • Senyo S.E., Steinhauser M.L., Pizzimenti C.L., Yang V.K., Cai L., Wang M., Wu T.D., Guerquin-Kern J.L., Lechene C.P. & Lee R.T. 2013. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493: 433–436.PubMedWeb of ScienceGoogle Scholar

  • Severs N.J. 2000. The cardiac muscle cell. BioEssays 22: 188–199.PubMedCrossrefGoogle Scholar

  • Shi Q. & King R.W. 2005. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437: 1038–1042.CrossrefPubMedGoogle Scholar

  • Siddiqi S. & Sussman M.A. 2014. The heart: mostly postmitotic or mostly premitotic? Myocyte cell cycle, senescence, and quiescence. Can. J. Cardiol. 30: 1270–1278.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Soonpaa M.H., Kim K.K., Pajak L., Franklin M. & Field L.J. 1996. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271: H2183–H2189.Google Scholar

  • Stephen M.J., Poindexter B.J., Moolman J.A., Sheikh-Hamad D. & Bick R.J. 2009. Do binucleate cardiomyocytes have a role in myocardial repair? Insights using isolated rodent myocytes and cell culture. Open Cardiovasc. Med. J. 3: 1–7.CrossrefPubMedGoogle Scholar

  • Takeuchi T. 2014. Regulation of cardiomyocyte proliferation during development and regeneration. Dev. Growth Differ. 56: 402–409.CrossrefWeb of SciencePubMedGoogle Scholar

  • Tormos A.M., Taléns-Visconti R. & Sastre J. 2015. Regulation of cytokinesis and its clinical significance. Crit. Rev. Clin. Lab. Sci. 52: 159–167.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Uygur A. & Lee R.T. 2016. Mechanisms of cardiac regeneration. Dev. Cell. 36: 362–374.Web of ScienceCrossrefPubMedGoogle Scholar

  • Weigmann K., Cohen S.M. & Lehner C.F. 1997. Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124: 3555–3563.PubMedGoogle Scholar

About the article

Received: 2017-08-04

Accepted: 2017-08-20

Published Online: 2017-08-31

Published in Print: 2017-08-28

Citation Information: Biologia, Volume 72, Issue 8, Pages 825–830, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0107.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Maicon Landim-Vieira, Joslyn M. Schipper, J. Renato Pinto, and P. Bryant Chase
Journal of Muscle Research and Cell Motility, 2019
Marketa Hlavackova, Elissavet Kardami, Robert Fandrich, and Grant N. Pierce
Journal of Molecular and Cellular Cardiology, 2018

Comments (0)

Please log in or register to comment.
Log in