Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 9

Issues

Evaluation of three semi-distributed hydrological models in simulating discharge from a small forest and arable dominated catchment

Ilona Kása
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Györgyi Gelybó
  • Corresponding author
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ágota Horel
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zsófia Bakacsi
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eszter Tóth
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sándor Koós
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Márton Dencső
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johannes Deelstra / Sándor Molnár
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Csilla Farkas
  • Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research of Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15. Hungary
  • NIBIO, Norwegian Institute of Bioeconomy Research, Frederik A. Dahls vei 20, 1430 Ås, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0108

Abstract

Catchment scale hydrological models are promising tools for simulating the effect of catchment-specific processes and management on soil and water resources. Here, we present a model intercomparison study of runoff simulations using three different semi-distributed rainfall-runoff catchment models. The objective of this study was to demonstrate the applicability of the Hydrologiska Byrans Vattenavdelning (HBV-Light); Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport (PERSiST); and INtegrated CAtchment (INCA) models on Somogybabod Catchment, near Lake Balaton, Hungary.

The models were calibrated and validated against observed discharge data at the outlet of the catchment for the period of January 1, 2006 –July 12, 2015. Model performance was evaluated using graphical representations, e.g. daily and monthly hydrographs and Flow Duration Curves (FDC) and model evaluation statistic; Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2). The simulation results showed that the models provided good estimates of monthly average discharge (0.60–0.90 NSE; 0.60–0.91 R2) and satisfactory results for daily discharge (0.46–0.62 NSE; 0.50–0.67 R2). We found that the application of hydrological models serves as a powerful basis for ensemble modelling of average runoff and could enhance our understanding of the eco-hydrological and transport processes within catchments. On the other hand, it can highlight the uncertainty of model forecasts and the importance of goal specific evaluation.

Key words: catchment scale modeling; HBV-Light; INCA; PERSiST; runoff

References

  • Dagnew D.C., Guzman C.D., Zegeye A.D., Tibebu T.Y., Getaneh M., Abate S., Zemale F.A., Ayana E.K., Tilahun S.A. & Steenhuis T.S. 2015. Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. J. Hydrol. Hydromech. 63: 210–219.Web of ScienceGoogle Scholar

  • Farkas C., Gelybó G., Bakacsi Z., Horel Á., Hagyó A., Dobor L., Kása I. & Tóth E. 2014. Impact of expected climate change on soil water regime under different vegetation conditions. Biologia 69: 1510–1519.Web of ScienceGoogle Scholar

  • Farkas C., Kvćrnř S., Engebretsen A., Barneveld R. & Deelstra J. 2016. Applying profile- and catchment-based mathematical models for evaluating the run-off from a Nordic catchment. J. Hydrol. Hydromech. 64: 218–225.Web of ScienceGoogle Scholar

  • Institute of Geodesy, Cartography and Remote Sensing (FÖMI). 1979. Contoured topographic maps at scale 1: 10 000. Hungarian Unified Map Projection System.Google Scholar

  • Futter M.N., Erlandsson M., Butterfield D.A., Whitehead P.G., Oni S.K. & Wade A.J. 2014. PERSiST: a flexible rainfallrunoff modelling toolkit for use with the INCA family of models. Hydrol. Earth Syst. Sci. 18: 855–873.CrossrefGoogle Scholar

  • Golmohammadi G., Prasher S., Madani A. & Rudra R. 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology 1: 20–39.CrossrefGoogle Scholar

  • Hart M.R., Quin B.F. & Nguyen M.L. 2004. Phosphorus run-off from agricultural land and direct fertilizer effects: A review. J. Environ. Qual. 33: 1954–1972.CrossrefGoogle Scholar

  • Holko L., Kostka Z., Lichner L. & Píš V. 2006. Variation of nitrates in runoff from mountain and rural areas. Biologia 61(Suppl. 19): S270–S274.Google Scholar

  • Horel A., Lichner L., Alaoui A., Czachor H., Nagy V. & Tóth E. 2014. Transport of iodide in structured clay–loam soil under maize during irrigation experiments analyzed using HYDRUS model. Biologia 69: 1531–1538.Web of ScienceGoogle Scholar

  • Horel A., Tóth E., Gelybó Gy., Kása I., Bakacsi Zs. & Farkas C. 2015. Effects of land use and management on soil hydraulic properties. Open Geosci. 7: 742–754.Web of ScienceGoogle Scholar

  • Hughes D. A. 1995. Monthly rainfall–runoff models applied to arid and semiarid catchments for water resource estimation purposes. Hydrolog. Sci. J. 40: 751–769.CrossrefGoogle Scholar

  • IUSS Working Group WRB. 2006. World reference base for soil resources. 2006. World Soil Resources Reports. NO. 103. Rome, FAO.Google Scholar

  • Jakab G. 2008. Természeti tényezők hatása a talajpusztulás vonalas formáinak kialakulására. (Influence of natural factors on the development of linear erosion types.) PhD Thesis. Budapest. 140 pp. (in Hungarian)Google Scholar

  • Justić D., Rabalais N.N., Turner R.E. & Dortch Q. 1995. Changes in nutrient structure of river-donimated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science 40: 339–356.CrossrefGoogle Scholar

  • Kirchner P.B., Bales R.C., Musselman K.N. & Molotch N.P. 2009. Multi-scale observations and modeling of the snowpack in a forested Sierra Nevada catchment. Fall meeting, Amer. Geophys. Union 90(52): Abstract C23D-08.Google Scholar

  • Leys A., Govers G., Gillijns K., Berckmoes E. & Takken I. 2010. Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage: the role of residue cover. J. Hydrol. 390: 143–154.Web of ScienceCrossrefGoogle Scholar

  • Li H., Beldring S. & Xu C.Y. 2015. Stability of model performance and parameter values on two catchments facing changes in climatic conditions. Hydrolog. Sci. J. 60: 1317–1330.CrossrefWeb of ScienceGoogle Scholar

  • Li H. & Zhang Y. 2016. Regionalising rainfall–runoff modelling for predicting daily runoff in continental Australia. Hydrol. Earth Syst. Sci. Discuss. 14: 101–116.Google Scholar

  • Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D. & Veit T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Amer. Soc. Agri. Biol. Engine. 50: 885-900.Google Scholar

  • Mwakalila S., Campling P., Feyen J., Wyseure G. & Beven K. 2001. Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions. Hydrol. Process. 15: 2281–2295.CrossrefGoogle Scholar

  • Nash I.E. & Sutcliffe I.V. 1970. River flow forecasting through conceptual models. J. Hydrol. 10: 282–290.CrossrefGoogle Scholar

  • New M., Lister D., Hulme M. & Makin I. 2002. A high-resolution data set of surface climate over global land areas. Climate Res. 21: 1–25.CrossrefGoogle Scholar

  • Ouyang F., Lü H., Zhu Y., Zhang J., Yu Z., Chen X. & Li M. 2014. Uncertainty analysis of downscaling methods in assessing the influence of climate change on hydrology. Stoch. Env. Res. Risk. A. 28: 991–1010.CrossrefWeb of ScienceGoogle Scholar

  • Pechlivanidis I.G., Jackson B.M., MCintyre N.R. & Wheather H.S. 2011. Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global NEST J. 13: 193–214.Google Scholar

  • Pomeroy J.W., Boer de D. & Martz L.W. 2005. Hydrology and Water Resources of Saskatchewan. Centre for Hydrology Report. University of Saskatchewan, Saskatoon, Saskatchewan. 25 pp.Google Scholar

  • Ponyi J. & P. Zánkai N. 2003. A Tetves-patak hidrozoológai vizsgálata.(The hydro-zoological examination of Tetves-Stream). Natura Somogyiensis 5: 29–40. (in Hungarian)Google Scholar

  • Price K., Jackson C.R., Parker A.J., Reitan T., Dowd J. & Cyterski M. 2011. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina. United States. Water. Resour. Res. 47: W02516Web of ScienceGoogle Scholar

  • Reynolds J.E., Halldin S., Xu C.Y., Seibert J. & Kauffeldt A. 2015. Sub-daily runoff simulations with parameters inferred at the daily time scale. Hydrol. Earth Syst. Sci. Discuss. 12: 7437–7467.CrossrefGoogle Scholar

  • Rumsey C.A., Matthew P., Susong M.D., Tillman F.D. & Anning D.W. 2015. Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. J. Hydrol. Regional Studies 4(Part B): 91–107.CrossrefGoogle Scholar

  • Schneiderman E.M., Steenhuis T.S., Thongs N.J., Easton Z.M., Zion M.S. Neal A.L., Mendoza G.E & Walter, M.T. 2007. Incorporating variable source area hydrology to a curvenumber-based watershed model. Hydrol. Process. 21: 3420–3430.CrossrefGoogle Scholar

  • Seibert, J. & Vis M.J.P. 2012. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 16: 3315–3325Web of ScienceCrossrefGoogle Scholar

  • Shi Y., Davis K.J., Duffy C.J. & Yu X. 2011. A Watershed Scale Groundwater-Land-Surface Model Poster. 25th Conference on Hydrology, Seattle, WA. American Meteorological Society.Google Scholar

  • Singh J., Knapp H.V., Arnold J.G. & Demissie M. 2005. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. J. Amer. Water Res. Assoc. 41: 361–375.Google Scholar

  • Šurda P., Lichner L., Nagy V., Kollár J., Iovino M. & Horel Á. 2015. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia 70: 1474–1479.Web of ScienceGoogle Scholar

  • Szűcs P. 2012. Az erózió léptékfüggése. (Scale dependency of erosion). PhD Thesis. Pannon Egyetem Növénytermesztés és Kertészeti tudományok Doktori Iskola. Keszthely. 139 pp. (in Hungarian).Google Scholar

  • Tague C. & Grant G.E. 2009. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Water Resour. Res. 45: W07421.Web of ScienceGoogle Scholar

  • Tóth A., Jakab G., Huszár T., Kertész Á. & Szalai Z. 2001. Soil erosion measurements in the Tetves catchment, Hungary. In: Proceedings of the Trilateral Co-operation Meeting on Physical Soil Degradation, Bratislava, pp. 13–24.Google Scholar

  • Varga-Haszonits Z. 1977. Agrometeorológia. Mezőgazdasági Kiadó, Budapest. 224 pp. (in Hungarian)Google Scholar

  • Whitehead P.G., Wilson E.J. & Butterfield D. 1998a. A semidistributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part I – model structure and process equations. Sci. Tot. Environ. 210–211: 547–558.Google Scholar

  • Whitehead P.G., Wilson E.J., Butterfield D. & Seed K. 1998b. A semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part II – application to large river basins in southWales and Eastern England. Sci. Tot. Environ. 210–211: 559–584.Google Scholar

  • Ye W., Bates B.C., Viney N.R., Sivapalan, M. & Jakeman A.J. 1997. Performance of conceptual rainfall-runoffmodels in lowyielding ephemeral catchments. Water Resour. Res. 33: 153–166.CrossrefGoogle Scholar

  • Zhang X. & Lindström G. 1996. A comparative study of a Swedish and a Chinese hydrological model. J. Amer. Water Resour. Assoc. 32: 985–994.CrossrefGoogle Scholar

About the article

Received: 2016-09-26

Accepted: 2017-12-09

Published Online: 2017-09-30

Published in Print: 2017-09-26


Citation Information: Biologia, Volume 72, Issue 9, Pages 1002–1009, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0108.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in