Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 9

Issues

Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol

Ján Horák
  • Corresponding author
  • Department of Biometeorology and Hydrology, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, Hospodárska 7, SK-94901 Nitra, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Kondrlová
  • Department of Biometeorology and Hydrology, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, Hospodárska 7, SK-94901 Nitra, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dušan Igaz
  • Department of Biometeorology and Hydrology, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, Hospodárska 7, SK-94901 Nitra, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimír Šimanský
  • Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raphael Felber / Martin Lukac
  • School of Agriculture, Policy and Development, University of Reading, Reading RG66AR, UK
  • Department of Forest Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CZ-16521 Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eugene V. Balashov / Natalya P. Buchkina / Elena Y. Rizhiya / Michal Jankowski
  • Department of Soil Science and Landscape Management, Faculty of Earth Sciences, Nicolaus Copernicus University, Lwowska 1, PL-87-100 Toruń, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0109

Abstract

The benefits of biochar application are well described in tropical soils, however there is a dearth of information on its effects in agricultural temperate soils. An interesting and little explored interaction may occur in an intensive agriculture setting; biochar addition may modify the effect of commonplace N-fertilization. We conducted a field experiment to study the effects of biochar application at the rate of 0, 10 and 20 t ha−1 (B0, B10 and B20) in combination with 0, 40 and 80 kg N ha−1 of N-fertilizer (N0, N40, N80). We followed nitrous oxide (N2O) emissions, analysed a series of soil physicochemical properties and measured barley yield in a Haplic Luvisol in Central Europe. Seasonal cumulative N2O emissions from B10N0 and B20N0 treatments decreased by 27 and 25% respectively, when compared to B0N0. Cumulative N2O emissions from N40 and N80 combined with B10 and B20 were also lower by 21, 19 and 25, 32%, respectively compared to controls B0N40 and B0N80. Average pH was significantly increased by biochar addition. Increased soil pH and reduces NO3 content seen in biochar treatments could be the two possible mechanisms responsible for reduced N2O emissions. There was a statistically significant increase of soil water content in B20N0 treatment compared to B0N0 control, possibly as a result of larger surface area and the presence of microspores having altered pore size distribution and water-holding capacity of the soil. Application of biochar at the rate of 10 t ha−1 had a positive effect on spring barley grain yield.

Key words: biochar; nitrogen fertilization; soil properties; N2O emission; yield

References

  • Agegnehu G., Bass A. M., Nelson P. N. & Bird M. I. 2016. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Tot. Environ. 543: 295–306.CrossrefGoogle Scholar

  • Agegnehu G., Bass A. M., Nelson P. N., Muirhead B., Wright G. & Bird M. I. 2015. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 213: 72–85.CrossrefGoogle Scholar

  • Anderson C. R., Hamonts K., Clough T. J. & Condron L. M. 2011. Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. Agric. Ecosyst. Environ. 191: 63–72.Web of ScienceGoogle Scholar

  • Appel T. & Klein B. 2015. Mineralization and immobilization of nitrogen in soil amended with biochar, compost and cocomposted biochar, pp. 112–113. In: Understanding biochar mechanisms for practical implementation, Hochshule Geisenheim University.Google Scholar

  • Atkinson C. J., Fitzgerald J. D. & Hipps N. A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337: 1–18.CrossrefWeb of ScienceGoogle Scholar

  • Barrow C. J. 2012. Biochar: potential for countering land degradation and for improving agriculture. Appl. Geogr. 34: 21–28.CrossrefWeb of ScienceGoogle Scholar

  • Case S. D. C., McNamara N. P., Reay D. S. & Whitaker J. 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil— the role of soil aeration. Soil Biol. Biochem. 51: 125–134.Web of ScienceCrossrefGoogle Scholar

  • Castaldi S., Riondino M., Baronti S., Esposito F. R., Marzaioli R., Rutigliano F. A., Vaccari F.P. & Miglietta F. 2011. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere. 85: 1464–1471.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Cayuela M. L., Van Zwieten L., Singh B. P., Jeffery S., Roig A. & Sánchez-Monedero M. A. 2014. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agr. Ecosyst. Environ. 191: 5–16.CrossrefWeb of ScienceGoogle Scholar

  • Clough T. J., Condron L. & Kammann Cand Müller C. 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3: 275–93.CrossrefGoogle Scholar

  • Czachor H. & Lichner L’. 2013. Temperature influences water sorptivity of soil aggregates. J. Hydrol. Hydromech. 61: 84–87.Web of ScienceGoogle Scholar

  • Chintala R., Owen R., Kumar S., Schumacher T. E. & Malo D. 2014a. Biochar impacts on denitrification under different soil water contents. World Cong. Soil Sci. 6: 157–157.Google Scholar

  • Delgado J. A. & Follett R. F. 2010. Advances in nitrogen management for water quality. Soil Water Conservation Society, Ankeny, IA, 424 pp.Google Scholar

  • Fangueiro D., Senbayran M., Trindade H. & Chadwick D. 2008. Cattle slurry treatment by screw press separation and chemically enhanced settling: effect ongreenhouse gas emissions after land spreading and grass yield. Bioresour. Technol. 99: 7132–7142.PubMedCrossrefGoogle Scholar

  • Felber R., Leifeld J., Horák J. and Neftel A. 2013. Nitrous oxide emission reduction with greenwaste biochar: comparison of laboratory and field experiments. Eur. J. Soil Sci. 65: 128–138.Web of ScienceGoogle Scholar

  • Gruhn P., Goletti F. & Yudelman M. 2000. Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges, 38 pp. In: Food, agriculture, and the environment discussion paper 32, IFPRI, Washington, USA.Google Scholar

  • HGCA. 2005. The barley growth guide. http://www.hgca.com/media/186381/g30-the-barley-growth-guide.pdf. (accessed 07.07.2016).

  • Hüppi R., Felber R., Neftel A., Six J. & Leifeld J. 2015. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil 1: 707–717.CrossrefGoogle Scholar

  • Ippolito J.A., Novak J.M., Busscher W.J., Ahmedna M., Rehrah D. & Watts D.W. 2012. Switchgrass biochar affects two Aridisols. J. Environ. Qual. 41: 1123–1130.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H. & Murphy D.V. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45: 113–124.Web of ScienceCrossrefGoogle Scholar

  • Karer J., Wimmer B., Zehetner F., Kloss S. & Soja G. 2013. Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agr. Food Sci. 22: 390-403.Google Scholar

  • Karhu K., Mattila T., Bergstroem I. & Regina K. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agr. Ecosyst. Environ. 140: 309–313.CrossrefWeb of ScienceGoogle Scholar

  • Laird D., Fleming P., Wang B., Horton R. & Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158: 436–442.CrossrefWeb of ScienceGoogle Scholar

  • Lal R. 2009. Soils and food sufficiency. A review. Agron. Sust. Develop. 29: 113–133.CrossrefGoogle Scholar

  • Leelamanie D.A.L. 2014. Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka. J. Hydrol. Hydromech. 62: 309–315.Web of ScienceGoogle Scholar

  • Lehmann J., Gaunt J. & Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strat. Glob. Change. 11: 395–419.Google Scholar

  • Lehmann J., Rillig M.C., Thies J., Masiell C.A., Hockaday W.C. & Crowley D. 2011. Biochar effects on soil biota, A review. Soil Biol. Biochem. 43: 1812–1836.CrossrefWeb of ScienceGoogle Scholar

  • Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizăo F. J., Petersen J. & Neves E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70: 1719–1730.CrossrefGoogle Scholar

  • Liyanage T.D.P. & Leelamanie D.A.L. 2016. Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol. J. Hydrol. Hydromech. 64: 160–166.Web of ScienceGoogle Scholar

  • Liu E., Changrong Y., Xurong M., Wenqing H., So H. B., Linping D., Qin L., Shuang L. & Tinglu F. 2010. Long term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in north-west China. Geoderma 150: 173–180.Google Scholar

  • Liu X.Y., Qu J. J., Li L.Q., Zhang A.F., Jufeng Z., Zheng J.W. & Pan G.X. 2012. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? – A cross site field experiment from South China. Ecol. Eng. 42: 168–173.CrossrefWeb of ScienceGoogle Scholar

  • Nelissen V., Ruysschaert G., Manka’Abusi D., D’Hose T., De Beuf K., Al-Barri B., Cornelis W. & Boeckx P. 2015. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Europ. J. Agronomy 62: 65–78.CrossrefGoogle Scholar

  • Schnell R.W., Vietor D.M., Provin T.L., Munster C.L. & Capareda S. 2012. Capacity of biochar application to maintain energy crop productivity: soil chem-istry, sorghum growth, and runoff water quality effects. J. Environ. Qual. 41: 1044–1051.PubMedCrossrefGoogle Scholar

  • Shen J., Tang H., Liu J., Wang C., Li Y., Ge T., Jones D. L. & Wu J. 2014. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agr. Ecosyst. Environ. 188: 264–274.CrossrefWeb of ScienceGoogle Scholar

  • Simek M. & Cooper J.E. 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Euro. J. Soil Sci. 53: 345–354.CrossrefGoogle Scholar

  • Singh B. P., Hatton B.J., Singh B., Cowie A.L. & Kathuria A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39: 1224–1235.Web of ScienceCrossrefPubMedGoogle Scholar

  • Steiner C., Teixeira W.G., Lehmann J. & Zech W. 2007. Long term effects of manure, charcoaland mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil. 291: 275–290.CrossrefGoogle Scholar

  • Suddick E.C. & Six J. 2013. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci. Total Environ. 65: 298–307.Web of ScienceGoogle Scholar

  • Sutton M.A. & van Grinsven H. 2011. The European nitrogen assessment. Sources, effects, and policy perspectives. Cambridge Univ. Press, Cambridge, UK, 664 pp.Google Scholar

  • Van Zwieten L., Kimber S., Morris S., Downie A., Berger E., Rust J. & Scheer C. 2010. Influence of biochars on flux of N2O and CO2from Ferrosol. Aust. J. Soil Res. 48: 555–568.CrossrefGoogle Scholar

  • Verhoeven E. & Six J. 2014. Biochar does not mitigate fieldscale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191: 27–38.CrossrefGoogle Scholar

  • Yan F., Schubert S. & Mengel K. 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28: 617–624.CrossrefGoogle Scholar

  • Yuan J., Xu R., Qian W. & Wang R. 2011a. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soil Sediment 11: 741–750.CrossrefWeb of ScienceGoogle Scholar

  • Yuan J., Xu R. & Zhang, H. 2011b. The forms of alkalis in the biochar produced from crop residues at different temperatures. Biores. Technol. 102: 3488–3497.CrossrefGoogle Scholar

  • Zhang A., Cui L., Pan G., Li L., Hussain Q., Zhang X., Zheng J. & Crowley D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agr. Ecosyst. Environ. 139: 469–475.Web of ScienceCrossrefGoogle Scholar

  • Zhang A., Bian R., Pan G., Cui L., Hussain Q., Li L., Zheng J., Zheng J., Zhang X., Han X. & Yu X. 2012. Effects of biochar amendments on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res. 127: 153–160.CrossrefGoogle Scholar

About the article

Received: 2016-12-12

Accepted: 2017-03-21

Published Online: 2017-09-30

Published in Print: 2017-09-26


Citation Information: Biologia, Volume 72, Issue 9, Pages 995–1001, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0109.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Martin Brtnicky, Tereza Dokulilova, Jiri Holatko, Vaclav Pecina, Antonin Kintl, Oldrich Latal, Tomas Vyhnanek, Jitka Prichystalova, and Rahul Datta
Agronomy, 2019, Volume 9, Number 11, Page 747
[2]
Elena Y. Rizhiya, Irina M. Mukhina, Eugene V. Balashov, Vladimír Šimansky, and Natalya P. Buchkina
Zemdirbyste-Agriculture, 2019, Volume 106, Number 4, Page 297
[3]
Andrej Tarnik
IOP Conference Series: Materials Science and Engineering, 2019, Volume 603, Page 022068
[4]
Ján Horák, Eugene Balashov, Vladimír Šimanský, Dušan Igaz, Natalya Buchkina, Elena Aydin, Viliam Bárek, and Katarína Drgoňová
Biologia, 2019, Volume 74, Number 7, Page 767
[5]
Vladimír Šimanský, Ján Horák, Dušan Igaz, Eugen Balashov, and Jerzy Jonczak
Journal of Soils and Sediments, 2017

Comments (0)

Please log in or register to comment.
Log in