Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 9

Issues

Root system architecture – budget experimental system for monitoring and analyses

Margarita L. Himmelbauer
  • Corresponding author
  • Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Scholl
  • Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
  • Division of Agronomy, University of Natural Resources and Life Sciences, Konrad Lorenz-Str. 24, 3430 Tulln, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gernot Bodner
  • Division of Agronomy, University of Natural Resources and Life Sciences, Konrad Lorenz-Str. 24, 3430 Tulln, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Willibald Loiskandl
  • Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0110

Abstract

Quantifications of root system architecture and growth dynamics became essential in sustainable agriculture, bio-engineering and underground ecology in general. Assessing of root architectural parameters is still challenging also owing to different methodological challenges and high-cost facilities required. The objective of this study was to design and examine a performance of a simple experimgal set-up for monitoring and analyses of root system architecture. The proposed system was examined with two cover crops – white mustard and sweet clover – grown in sand filled pots under controlled climate conditions for several weeks. Root systems of each crop were harvested in regular intervals of 2 to 3 weeks in 3 to 4 replicates. After careful washing, the intact root systems were photo captured in water filled cylinder in their quasi-natural position over entire rotation and then scanned using a flatbed professional scanner. The gained images (photos and scans) were analysed with AutoCAD and WinRhizo software for measuring of diverse root architectural parameters for modelling. The results showed that the selected experimental and methodical approaches were appropriate for monitoring and delivering data of good quality. Both, digital camera and scanner were regarded as essential complementary imaging tools for correct assessment of the root system architecture. To maximise the accuracy of the measurements, recommendation for improving the system were provided. Extracted root data are intended for parametrisation of root architectural models, but they also support researcher and experts in their efforts to improve crop uptake efficiency in sustainable agriculture and for bio-engineering purposes.

Key words: budget experimental system; imaging methods and measuring tools; root growth models; root parameters; root system architecture

References

  • AutoCAD 2014. Autodesk University (http://www.autodesk.de/) Bardgett R.D., Mommer L. & De Vries F.T. 2014. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29: 692–699.

  • Bengough A.G., Gordon D.C., Al-Menaie H., Ellis R.P., Allan D., Keith R., Thomas W.T.B. & Forster B.P. 2004. Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant Soil 262: 63–70.CrossrefGoogle Scholar

  • Bodner G., Leitner D., Nakhforoosh A., Sobotik M., Moder K. & Kaul H.-P. 2013a. A statistical approach to root system classification. Front. Plant Sci. 4: 292. CrossrefWeb of ScienceGoogle Scholar

  • Bodner G., Scholl P., Loiskandl W. & Kaul H.-P. 2013b. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma 204–205: 120–129.Web of ScienceGoogle Scholar

  • Clark R.T., Famoso A.N., Zhao K., Shaff J.E., Craft E.J., Bustamante C.D., McCouch S.R., Aneshansley D.J. & Kochian L.V. 2013. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36: 454–466.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Diggle A.J. 1988. ROOTMAP-a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105: 169–178.CrossrefGoogle Scholar

  • Downie H.F., Adu M.O., Schmidt S., Otten W., Dupuy L.X., White P.J. & Valentine T.A. 2015. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ. 38: 1213–1232.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Dunbabin V., Postma J., Schnepf A., Pagès L., Javaux M., Wu L., Leitner D., Chen Y., Rengel Z. & Diggle A. 2013. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil 372: 93–124.CrossrefWeb of ScienceGoogle Scholar

  • Dunbabin V., Rengel Z. & Diggle A. 2004. Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Funct. Ecol. 18: 2004–2211.Google Scholar

  • Dunbabin V.M., Diggle A.J., Rengel Z. & van Hugten R. 2002. Modelling the interactions between water and nutrient uptake and root growth. Plant Soil 239: 19–38.CrossrefGoogle Scholar

  • Dupuy L., Gregory P.J. & Bengough A.G. 2010. Root growth models: towards a new generation of continuous approaches. J. Exp. Bot. 61: 2131–2143.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Haeusler C. & Pucher D.R. 2014. Parametrisierung des Wurzelsystems von Gelbem Steinklee und Gelbsenf. Bachelor thesis, Univ. of Natural Resources and Life Sciences, Vienna, 30 pp.Google Scholar

  • Heppell J., Talboys P., Payvandi S., Zygalakis K.C., Fliege J., Withers P.J.A., Jones D.L. & Roose T. 2015. How changing root system architecture can help tackle a reduction in soil phosphate (P) levels for better plant P acquisition. Plant Cell Environ. 38: 118–128.CrossrefWeb of ScienceGoogle Scholar

  • Himmelbauer M.L., Loiskandl W. & Kastanek F. 2004. Estimating length, average diameter and surface area of roots using two different Image analyses systems. Plant Soil 260: 111–120.CrossrefGoogle Scholar

  • Himmelbauer, M.L., Loiskandl, W. & Rousseva, S. 2010. Spatial root distribution and water uptake of maize grown on field with subsoil compaction. J. Hydrol. Hydromech. 58: 163–174.Web of ScienceGoogle Scholar

  • Himmelbauer M.L., Vateva V., Lozanova L., Loiskandl W. & Rousseva S. 2013. Site effects on root characteristics and soil protection capability of two cover crops grown in South Bulgaria. J. Hydrol. Hydromech. 61: 30–38.Web of ScienceGoogle Scholar

  • Judd L.A., Jackson B.E. & Fonteno W.C. 2015. Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants 4: 369–392.CrossrefGoogle Scholar

  • Klement R., Fér M., Novotná S., Nikodem A. & Kodešová R. 2016. Root distributions in a laboratory box evaluated using two different techniques (gravimetric and image processing) and their impact on root water uptake simulated with HYDRUS. J. Hydrol. Hydromech. 64: 196–208.Web of ScienceGoogle Scholar

  • Lee Ch. & Rawlings J.O. 1982. Design of experiments in growth chambers – uniformity trials in the North Carolina State University Phytotron. Crop Science 22: 551–558CrossrefGoogle Scholar

  • Leitner D., Felderer B., Vontobel P. & Schnepf A. 2014. Recovering Root System Traits Using Image Analysis Exemplified by Two-Dimensional Neutron Radiography Images of Lupine. Plant Physiol. 164: 24–35.Web of SciencePubMedCrossrefGoogle Scholar

  • Leitner D., Klepsch S., Bodner G. & Schnepf A. 2010. A dynamic root system growth model based on L-Systems: Tropisms and coupling to nutrient uptake from soil. Plant Soil 332: 177–192.CrossrefGoogle Scholar

  • Lobet G., Draye X. & Périlleux C. 2013. An online database for plant image analysis software tools. Plant Methods 9: 38. http://www.plant-image-analysis.org/ (accessed 28.12.2016).Web of SciencePubMed

  • Lobet G., Pound M.P., Diener J., Pradal C., Draye X., Godin C., Javaux M., Leitner D., Meunier F., Nacry P., Pridmore T.P. & Schnepf A. 2015. Root System Markup Language: toward an unified root architecture description language. Plant Physiol. 167: 617–627CrossrefPubMedWeb of ScienceGoogle Scholar

  • Lynch J. 1995. Update on root biology: Root architecture and plant productivity. Plant Physiol. 109: 7–13.CrossrefGoogle Scholar

  • Lynch J. P. 2007. Roots of the second green revolution. Austral. J. Bot. 5: 493–512Google Scholar

  • Lynch J., Nielsen K.L., Davis R.D. & Jablokow A.G. 1997. Sim-root: modelling and visualization of root systems. Plant Soil 188: 139–151.CrossrefGoogle Scholar

  • Meier U. 1997. Phenological growth stages and BBCH-identification keys of weed species. p. 135–139. In: Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph. Berlin, Wien. Blackwell Wissenschafts-Verlag, 622 pp.Google Scholar

  • Metzner R., Eggert A., van Dusschoten D., Pflugfelder D., Gerth S., Schurr U., Uhlmann N. & Jahnke S. 2015. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11: 11–17.Web of ScienceGoogle Scholar

  • Pagès L., Jordan M. & Picard D. 1989. A simulation model of the three-dimensional architecture of the maize root system. Plant Soil 119: 147–154.CrossrefGoogle Scholar

  • Pagès L., Vercambre G., Drouet J., Lecompte F., Collet C. & Le Bot J. 2004. RootTyp: a generic model to depict and analyse the root system architecture. Plant Soil 258: 103–119.CrossrefGoogle Scholar

  • Schreiner J. & Panzenboeck F. 2014. Parametrisierung des Wurzelsystems von Steinklee. Bachelor thesis, Univ. of Natural Resources and Life Sciences, Vienna, 26 pp.Google Scholar

  • Stokes A., Atger C., Bengough A.G., Fourcaud T. & Sidle R.C. 2009. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324: 1–30CrossrefWeb of ScienceGoogle Scholar

  • Timlin D. & Ahuja L.R. 2013. Enhancing Understanding and Quantification of Soil–Root Growth Interactions. Series: Advances in Agricultural Systems Modeling. American Society of Agronomy, Madison, WI, USA, 324 pp. ISBN-10: 0891183388; ISBN-13: 978-0891183389Google Scholar

  • Tron S., Bodner G., Laio F., Ridolfi L. & Leitner D. 2015. Can diversity in root architecture explain plant water use efficiency? A modeling study root. Ecol. Model. 312: 200–210.CrossrefWeb of ScienceGoogle Scholar

  • Wang J., Zhang X. & Wu C. 2015. Advances in experimental methods for root system architecture and root development. J. Forest Res. 26: 23–32.CrossrefGoogle Scholar

  • WinRHIZO 2003. WinRHIZO software. Regent Instruments Inc., Quebec, Canada. www.regentinstruments.com Zobel R.W. & Waisel Y. 2010. A plant root system architectural taxonomy: a framework for root nomenclature. Plant Biosyst. 144: 507–512.Google Scholar

About the article

Received: 2017-01-31

Accepted: 2017-04-26

Published Online: 2017-09-30

Published in Print: 2017-09-26


Citation Information: Biologia, Volume 72, Issue 9, Pages 988–994, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0110.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in