Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 9

Issues

Far infrared imaging, an effective way to screen maize seedling mutants for drought stress response

Baozhu Li
  • Corresponding author
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruonan Fan
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shiquan Huang
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lei Peng
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jingxuan Guo
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qidi Zhan
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiang Zhao
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chunpeng Song
  • Corresponding author
  • Henan Key Laboratory of Plant Stress Biology; State Key Laboratory of Cotton Biology; College of Life Science, Henan University, Kaifeng 475004, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0111

Abstract

Water shortage is a global challenge and affects crop growth and development seriously. Stoma is the main channel of plant water transpiration. Water transpiration through stomata is an endothermic process and affects temperature of plants, especially leaf surface. In this study, we established a method for screening maize seedling mutant with abnormal leaf temperature by far infrared imaging. We found that seedling mutants with abnormal leaf temperature manifested different drought tolerance. Mutants with lower leaf temperature demonstrated faster moisture loss rate, poorer drought tolerance, higher osmotic potential, lower leaf relative water content, more accumulation of hydrogen peroxide, more serious cell membrane damage and more robust root systems and biomass under drought treatment, which are opposite in maize seedling mutants with higher leaf surface temperature compared with the corresponding control. Taken together, the method we established is an effective way to screen maize mutants with abnormal drought response.

Key words: Maize; far infrared imaging; drought treatment; leaf temperature

References

  • Belin C., de Franco P.O., Bourbousse C., Chaignepain S., Schmitter J.M., Vavasseur A., Giraudat J., Barbier–Brygoo H. & Thomine S. 2006. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141: 1316–1327.PubMedCrossrefGoogle Scholar

  • Brennan T. & Frenkel C. 1977. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 59: 411–416.CrossrefPubMedGoogle Scholar

  • Chen Z.Z., Zhang H.R., Jablonowski D., Zhou X.F., Ren X.Z., Hong X., Schaffrath R., Zhu J.K. & Gong Z. 2006. Mutations in ABO1/ELO2, a subunit of holo–elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol. Cell Biol. 26: 6902–6912.CrossrefPubMedGoogle Scholar

  • Chugh V., Kaur N. & Gupta A.K. 2011. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Ind. J. Biochem. Biophys. 48: 47–53.Google Scholar

  • Cominelli E., Conti L., Tonelli C. & Galbiati M. 2013. Challenges and perspectives to improve crop drought and salinity tolerance. N. Biotechnol. 30(4): 355–361.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Gaxiola R.A., Li J., Undurraga S., Dang L.M., Allen G.J., Alper S.L. & Fink G.R. 2001. Drought– and salt–tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. USA 98: 11444–11449.CrossrefGoogle Scholar

  • Gogorcena Y., Iturbe–Ormaetxe I., Escuredo P.R. & Becana M. 1995. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiol. 108: 753–759.PubMedGoogle Scholar

  • Janiak M. Kissel E., Van Dijck P. & Carpentier S. 2015. The unknown shadows of trehalase. Comm. Agric. Appl. Biol. Sci. 80:71–76.Google Scholar

  • Liu Y.K., Liu Y.B., Zhang M.Y. & Li DQ. 2010. Stomatal development and movement: the roles of MAPK signaling. Plant Signal Behav. 5: 1176–1180.PubMedCrossrefGoogle Scholar

  • Merlot S., Mustilli A.C., Genty B., North H., Lefebvre V., Sotta B., Vavasseur A. & Giraudat J. 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30: 601–609.CrossrefPubMedGoogle Scholar

  • Miao Y., Lv D., Wang P., Wang X.C., Chen J., Miao C. & Song C. P. 2006. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18: 2749–2766.CrossrefGoogle Scholar

  • Mustilli A.C., Merlot S., Vavasseur A., Fenzi F. & Giraudat J. 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089–3099.PubMedCrossrefGoogle Scholar

  • Pallas J.E., Michel B.E. & Harris D.G. 1967. Photosynthesis, transpiration, leaf temperature, and stomatal activity of cotton plants under varying water potentials. Plant Physiol. 42:76–88.CrossrefPubMedGoogle Scholar

  • Price A.H., Cairns J.E., Horton P., Jones H.G. & Griffiths H. 2002. Linking drought–resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J. Exp. Bot. 53: 989–1004.PubMedCrossrefGoogle Scholar

  • Quan R.D., Shang M., Zhang H., Zhao Y.X. & Zhang J.R. 2004. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebe– taine synthesis in maize. Plant Sci. 166: 141–149.CrossrefGoogle Scholar

  • Rai G.K., Rai N.P., Rathaur S., Kumar S. & Singh M. 2013. Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought–induced oxidative stress by regulating keyenzymatic and non–enzymatic antioxidants. Plant Physiol. Biochem. 69: 90–100.CrossrefPubMedGoogle Scholar

  • Shou H., Bordallo P., Fan J.B., Yeakley J.M., Bibikova M., Sheen J. & Wang K. 2004. Expression of an active tobacco mitogen–activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc. Natl. Acad. Sci. USA 101: 3298–3303.CrossrefGoogle Scholar

  • Sirichandra C., Davanture M., Turk B.E., Zivy M., Valot B., Leung J. & Merlot S. 2010. The Arabidopsis ABA–activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14–3–3 binding site involved in its turnover. PLoS One 5(11): e13935.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Song Y.W., Kang Y.L., Liu H., Zhao X.L., Wang P.T., An G.Y., Zhou Y., Miao C. & Song C.P. 2006. Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses. Chin. Sci. Bull. 51: 2586–2594.CrossrefGoogle Scholar

  • Spollen W.G., Lenoble M.E., Samuels T.D., Bemstein N. & Sharp R.E. 2000. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol. 122: 967–976.PubMedCrossrefGoogle Scholar

  • Vilela B., Moreno–Cortés A., Rabissi A., Leung J., Pagčs M. & Lumbreras V. 2013. The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1–type transcription factor. PLoS One 8(2): e58105.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Walton D.C., Harrison M.A. & Cote P. 1976. The effects of water stress on abscisic acid levels and metabolism in roots of Phaseolus vulgaris L. and other paints. Planta 131: 141–144.CrossrefGoogle Scholar

  • Wang W., Vinocur B., Shoseyov O. & Altman A. 2004. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244–252.CrossrefPubMedGoogle Scholar

  • Wang Y., Holroyd G., Hetherington A.M. & Ng C.K. 2004. Seeing ’cool’ and ’hot’-infrared thermography as a tool for non–invasive, high–throughput screening of Arabidopsis guard cell signalling mutants. J. Exp. Bot. 55: 1187–1193.CrossrefPubMedGoogle Scholar

  • Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F. & Shinozaki K. 2006. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281: 5310–5318.PubMedCrossrefGoogle Scholar

  • Zhang J. 1994. Accumulation of ABA in maize roots in response to root severing. New Phytol. 127: 309–314.CrossrefGoogle Scholar

  • Zhang T., Chen S. & Harmon A.C. 2014. Protein phosphorylation in stomatal movement. Plant Signal. Behav. 9: e972845.CrossrefPubMedGoogle Scholar

  • Zhu J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol. 53: 247–273.CrossrefPubMedGoogle Scholar

About the article

Received: 2016-09-21

Accepted: 2017-07-28

Published Online: 2017-09-30

Published in Print: 2017-09-26


Citation Information: Biologia, Volume 72, Issue 9, Pages 1010–1016, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0111.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in