Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 9

Issues

Comparison of various techniques to estimate the extent and persistence of soil water repellency

L’ubomír Lichner
  • Corresponding author
  • Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84104, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Rodný / Bernd Marschner
  • Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yona Chen
  • Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Itamar Nadav
  • Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Tarchitzky
  • Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karsten Schacht
  • Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0112

Abstract

New techniques to estimate the extent and persistence of soil water repellency (SWR) were compared with commonly used techniques in assessing the results taken in the long-term agricultural experimental orchards in northern Israel irrigated with either freshwater (FW), primary treated wastewater (WW) or (secondary or tertiary) treated wastewater (TWW), where SWR induced by irrigation was registered (Ha Ma’apil, Neve Etan, and Shafdan). The extent of SWR was assessed by the repellency index RI, combined repellency index RIc and modified repellency index RIm. The persistence of SWR was assessed by the water drop penetration time WDPT and water repellency cessation time WRCT. Soils from different textural classes were classified as slightly to strongly water repellent according to WDPT or RI values. Relationship between RIc and RI values can be well fitted by the linear equation, i.e., RIc could be a good substitute for RI. Relationships between WRCT and WDPT values as well as RIm and RIc or RI values cannot be accurately described by the linear equation, i.e., RIm is not a good substitute for RI for the values taken in this study.

Key words: treated wastewater; soil water repellency; repellency index; water drop penetration time; water repellency cessation time

References

  • Arye G., Tarchitzky J. & Chen Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. J. Hydrol. 397: 136–145.Web of ScienceCrossrefGoogle Scholar

  • Bachmann J., Krüger J., Göbel M.-O. & Heinze S. 2016. Occurrence and spatial pattern of water repellency in a beech forest subsoil. J. Hydrol. Hydromech. 64: 100–110.Web of ScienceGoogle Scholar

  • Beatty S.M. & Smith J.E. 2014. Infiltration of water and ethanol solutions in water repellent post wildfire soils. J. Hydrol. 514: 233–248.Web of ScienceCrossrefGoogle Scholar

  • Decagon 2012. Mini Disk Infiltrometer User’s Manual, Version 10. Decagon Devices, Inc., Pullman, 18 p.Google Scholar

  • Dekker L.W. & Ritsema C.J. 1996. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. Catena 28: 89–105.CrossrefGoogle Scholar

  • Dekker L.W., Oostindie K., Kostka S.J. & Ritsema C.J. 2005. Effects of surfactant treatments on the wettability of a water repellent grass-covered dune sand. Aust. J. Soil Res. 43: 383–395.CrossrefGoogle Scholar

  • Diamantis V., Pagorogon L., Gazani E., Gkiougkis I., Pechtelidis A., Pliakas F., van den Elsen E., Doerr S.H. & Ritsema C.J. 2017. Use of clay dispersed in water for decreasing soil water repellency. Land Degrad. Develop. 28: 328–334.CrossrefGoogle Scholar

  • Doerr S.H., Shakesby R.A. & Walsh R.P.D. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Rev. 51: 33–65.CrossrefGoogle Scholar

  • Fér M., Leue M., Kodešová R., Gerke H.H. & Ellerbrock R.H. 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings. J. Hydrol. Hydromech. 64: 111–120.Web of ScienceGoogle Scholar

  • Guzmán-Osorio F.J. & Adams R.H. 2015. Mitigation of water repellency in the treatment of contaminated muds using the chemical–biological stabilization process. Int. J. Environ. Sci. Technol. 12: 2071–2078.CrossrefWeb of ScienceGoogle Scholar

  • Hallett P.D., Baumgartl T. & Young I.M. 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Amer. J. 65: 184–190.CrossrefGoogle Scholar

  • Keck H., Felde V.J.M.N.L., Drahorad S.L. & Felix-Henningsen P. 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel. J. Hydrol. Hydromech. 64: 133–140.Web of ScienceGoogle Scholar

  • Kořenková L., Šimkovic I., Dlapa P., Juráni B. & Matúš P. 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska Pahorkatina Upland case study Soil & Water Res. 10: 78–89.Google Scholar

  • Lichner L., Dlapa P., Doerr S.H. & Mataix-Solera J. 2006. Evaluation of different clay minerals as additives for soil water repellency alleviation. Appl. Clay Sci. 31: 238–248.CrossrefGoogle Scholar

  • Lichner L’., Hallett P.D., Feeney D., Ďugová O., Šír M. & Tesař M. 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia 62: 537–541.Web of ScienceGoogle Scholar

  • Lichner L., Hallett P.D., Drongová Z., Czachor H., Kovacik L., Mataix-Solera J. & Homolák M. 2013. Algae influence hydrophysical parameters of a sandy soil. Catena 108: 58–68.CrossrefWeb of ScienceGoogle Scholar

  • Mataix-Solera J., Arcenegui V., Guerrero C., Mayoral A.M., Morales J., González J., García-Orenes F. & Gómez I. 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Proces. 21: 2300–2309.CrossrefGoogle Scholar

  • Moradi A.B., Carminati A., Lamparter A., Woche S.K., Bachmann J., Vetterlein D., Vogel H.-J. & Oswald S.E. 2012. Is the rhizosphere temporarily water repellent? Vadose Zone J. 11(3). CrossrefWeb of ScienceGoogle Scholar

  • Nadav I., Arye G., Tarchitzky J. & Chen Y. 2012. Enhanced infiltration regime for treated-wastewater purification in soil aquifer treatment (SAT). J. Hydrol. 420–421: 275–283.Web of ScienceGoogle Scholar

  • Nadav I., Tarchitzky J. & Chen Y. 2013. Induction of soil water repellency following irrigation with treated wastewater: effects of irrigation water quality and soil texture. Irrig. Sci. 31: 385–394.CrossrefWeb of ScienceGoogle Scholar

  • Nadav I., Tarchitzky J. & Chen Y. 2017. Water repellency reduction using soil heating in infiltration ponds of a wastewater soil aquifer treatment (SAT). J. Plant Nutr. Soil Sci. 180: 142–152.Web of ScienceCrossrefGoogle Scholar

  • Neris J., de la Torre S., Vidal-Vazquez E. & Lado M. 2017. Mitigation of water repellency in burned soils applying hydrophillic polymers. Geophysical Research Abstracts 19, EGU2017-19117-1.Google Scholar

  • Orfánus T., Dlapa P., Fodor N., Rajkai K., Sándor R. & Nováková K. 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Till. Res. 135: 49–59.CrossrefWeb of ScienceGoogle Scholar

  • Orfánus T., Stojkovová D., Rajkai K., Czachor H. & Sándor R. 2016. Spatial patterns of wetting characteristics in grassland sandy soil. J. Hydrol. Hydromech. 64: 167–175.Web of ScienceGoogle Scholar

  • Pekárová P., Pekár J. & Lichner L’. 2015. A new method for estimating soil water repellency index. Biologia 70: 1450–1455.Web of ScienceGoogle Scholar

  • Roper M.M. 2006. Potential for remediation of water repellent soils by inoculation with wax-degrading bacteria in southwestern Australia. Biologia 19: S358–S362.Google Scholar

  • Sándor R., Lichner L’., Filep T., Balog K., Lehoczky É. & Fodor N. 2015. Spatial variability of hydrophysical properties of fallow sandy soils. Biologia 70: 1468–1473.Web of ScienceGoogle Scholar

  • Schacht K. & Marschner B. 2015. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J. Hydrol. Hydromech. 63: 47–54.Web of ScienceGoogle Scholar

  • Schacht K., Chen Y., Tarchitzky J., Lichner L. & Marschner B. 2014. Impact of treated wastewater irrigation on water repellency of Mediterranean soils. Irrig. Sci. 32: 369–378.Web of ScienceCrossrefGoogle Scholar

  • Schonsky H., Peters A. & Wessolek G. 2014. Effect of soil water repellency on energy partitioning between soil and atmosphere: a conceptual approach. Pedosphere 24: 498–507.Web of ScienceCrossrefGoogle Scholar

  • Sepehrnia N., Hajabbasi M.A., Afyuni M. & Lichner L’. 2016. Extent and persistence of water repellency in two Iranian soils. Biologia 71: 1137–1143.Web of ScienceGoogle Scholar

  • Soil Survey Division Staff. 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 p.Google Scholar

  • Šurda P., Lichner L’., Nagy V., Kollár J., Iovino M. & Horel Á. 2015. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia 70: 1474–1479.Web of ScienceGoogle Scholar

  • Tarchitzky J., Lerner O., Shani U., Arye G., Lowengart-Aycicegi A., Brener A. & Chen Y. 2007. Water distribution pattern in treated wastewater irrigated soils: hydrophobicity effect. Eur. J. Soil Sci. 58: 573–588.Web of ScienceCrossrefGoogle Scholar

  • WRB 2006. World Reference Base for Soil Resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO, Rome.Google Scholar

  • Zavala L.M., García-Moreno J., Gordillo-Rivero T.J., Jordán A. & Mataix-Solera J. 2014. Natural soil water repellency in different types of Mediterranean woodlands. Geoderma 226–227: 170–178.Web of ScienceGoogle Scholar

About the article

Received: 2017-05-29

Accepted: 2017-08-07

Published Online: 2017-09-30

Published in Print: 2017-09-26


Citation Information: Biologia, Volume 72, Issue 9, Pages 982–987, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0112.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Thomas Weninger, Vilim Filipović, Mirel Mešić, Brent Clothier, and Lana Filipović
Geoderma, 2019, Volume 338, Page 187

Comments (0)

Please log in or register to comment.
Log in