Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 9

Issues

Evaluation of enteromicroflora of common crane (Grus grus) as a potential reservoir of bacterial antimicrobial resistance

Ľudmila Hamarová
  • Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, SK-04154 Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matej Repel
  • Slovenská ornitologická spoločnosť/BirdLife Slovensko, Námestie osloboditeľov 1, SK-07101 Michalovce, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Javorský / Peter Pristaš
  • Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, SK-04154 Košice, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0118

Abstract

Migratory birds could be important vectors of pathogenic bacteria and antimicrobial resistance transmissions over long distances. The common crane (Grus grus) is one of the largest migratory birds in Europe which form numerous flocks during migration. The aim of the study was to analyse enteromicroflora of common crane and to analyse the occurrence of antibiotic resistant bacteria in faecal samples of common crane collected at the most important migration stopover site of this bird species in Slovakia, the Special Protection Area Senianske rybníky. Upon cultivation on selective media 182 bacterial isolates were identified by MALDI-TOF mass spectrometry and analysed for antibiotic resistance. The most prevalent species of enterococci in faeces of common crane was Enterococcus casseliflavus (80.2%). Among Enterobaceriaceae isolates the most frequently detected species was Escherichia coli (51.5%) followed by Pantoea agglomerans (20.8%) and Serratia liquefaciens (19.8%). Very low frequency of antibiotic resistant bacteria was detected in faeces of common crane during the three years research period. No antimicrobial resistance was detected in enterococci and a single ampicillin resistant Raoultella ornithinolytica isolate, carrying the blaKPC gene, was detected among enterobacteria. Our results suggest that contamination by common crane faeces represents minimal risk in terms of the spread of antimicrobial resistance in the environment. The presence of some pathogenic bacteria requires further investigation of the risk associated with the transmission of bacteria during migration of cranes.

Key words: Grus grus; enteromicroflora; antimicrobial resistance

References

  • Atterby C., Ramey A.M., Gustafsson Hall G., Järhult J., Börjesson S. & Bonnedahl J. 2016. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect. Ecol. Epidemiol. 6: 323–334. CrossrefGoogle Scholar

  • Bancerz-Kisiel A., Szczerba-Turek A., Lipczyńska K., Stenzel T. & Szweda W. 2010. Bioserotypes and virulence markers of Yersinia enterocolitica strains isolated form mallards (Anas platyrhynchos) and pheasants (Phasianus colchicus). J. Food Prot. 75 (12): 2219–2222. CrossrefGoogle Scholar

  • Chen L., Mathema B., Chavda K.D., DeLeo F.R., Bonomo R.A. & Kreiswirth B.N. 2014. Carbapenemase-producting Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 22 (12): 686–696. CrossrefPubMedGoogle Scholar

  • Ehlers M.M., Veldsman Ch., Makgotlho E.P., Dove M.G., Hoosen A.A. & Kock M.M. 2009. Detection of blaSHV, blaTEM, blaCTX-M antibiotic resistance genes in randomly selected bacterial pathogens from the Steve Biko Academic Hospital. FEMS Immunol. Med. Microbiol. 56 (3): 191–196. CrossrefGoogle Scholar

  • Engelkirk P.G. & Duben-Engelkirk J.L. 2008. Laboratory Diagnosis of Infectious Diseases: Essentials of Diagnostic Microbiology Lippincott Williams & Wilkins, Baltimore, 754 pp. ISBN: 0781797012, 9780781797016Google Scholar

  • Hoar B.M., Whiteside D.P., Ward L., Douglas Inglis G. & Morck D.W. 2007. Evaluation of the enteric microflora of captive Whooping Cranes (Grus americana) and Sandhill Cranes (Grus canadensis). Zoo Biol. 26 (2): 141–153. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kiskova J., Hrehová Z., Janiga M., Lukáň M., Haas M. & Cuvalová Z. 2012. Bacterial prevalence in the Dunnock (Prunella, modularis) in sub-alpine habitats of the Western Carpathians, Slovak Republic. Ornis Fennica 89 (1): 34–43.Google Scholar

  • Klibi N., Amor I.B., Rahmouni M., Dziri R., Douja G., Said L.B., Lozano C., Boudabous A., Slama K.B., Mansouri R. & Torres C. 2015. Diversity of species and antibiotic resistance among fecal enterococci from wild birds in Tunisia. Detection of vanA-containing Enterococcus faecium isolates. Eur. J. Wildl. Res. 61 (2): 319–323. DOI 10.1007/s10344-014-0884-2Web of ScienceCrossrefGoogle Scholar

  • Mukesh S., Dogra B.B., Rabindranarh M., Nageswari G., Moumita S. & Savita J. 2012. Multidrug resistant Pantoea agglomerans in patient with septic arthritis- a rare report from India. Int. J. Microbiol. Res. 4 (6): 263–265. CrossrefGoogle Scholar

  • Murugaiyan J., Krueger K., Roesler U., Weinreich J. & Schierack P. 2015. Assessment of species and antimicrobial resistance among Enterobacteriaceae isolated from mallard duck faeces. Environ. Monit. Assess. 187 (3): 127. .CrossrefWeb of ScienceGoogle Scholar

  • Naas T., Cuzon G., Villegas M.V., Lartigue M.F., Quinn J.P. & Nordmann P. 2008. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob. Agents Chemother. 52 (4): 1257–1263. CrossrefGoogle Scholar

  • Pérez-Pérez F.J. & Hanson N.D. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40 (6): 2153–2162. CrossrefPubMedGoogle Scholar

  • Poirel L., Walsh T.R., Cuvillier V. & Nordmann P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 70 (1): 119–123. .CrossrefWeb of SciencePubMedGoogle Scholar

  • Repel M., Chrašč P., Pačenovský S. & Uhrín J. 2009. Migrácia a prvé doložené hniezdenie žeriava popolavého (Grus grus) na Slovensku [Migration and the first documented breeding of the Crane (Grus grus) in Slovakia]. Tichodroma 21: 73–77.Google Scholar

  • Ryu H., Lu J., Elk M., Chávez Ramírez F., Ashbolt N. & Santo Domingo J. 2012. Development and evaluation of quantitative PCR assay targeting Sandhill Crane (Grus canadensis) fecal pollution. Appl. Environ. Microbiol. 78 (12): 4338–4345. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Schulthess B., Bloemberg G.V., Zbinden R., Böttger E.C. & Hombach M. 2014. Evaluation of the Bruker MLDI Biotyper for identification of gram-positive rods: Development of a diagnostic algorithm for the clinical laboratory. J. Clin. Microbiol. 52 (4): 1089–1097. CrossrefGoogle Scholar

  • Stedt J., Bonnedahl J., Hernandez J., McMahon B.J., Hassan B., Olsen B., Drobni M. & Waldenström J. 2014. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect. Ecol. Epidemiol. 4 (1): Article 21565. .CrossrefPubMedGoogle Scholar

  • Stedt J., Bonnedahl J., Hernandez J., Waldenströim J., McMahon B.J., Tolf C., Olsen B. & Drobni M. 2015. Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. Acta Vet. Scand. 57: 74. CrossrefWeb of SciencePubMedGoogle Scholar

  • Xie Y., Xia P., Wang H., Yu H., Giesy J.P., Zhang Y., Mora M.A. & Zhang X. 2016. Effect of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci. Rep. 6: 33350. CrossrefGoogle Scholar

About the article

Received: 2017-03-13

Accepted: 2017-06-17

Published Online: 2017-09-30

Published in Print: 2017-09-26


Citation Information: Biologia, Volume 72, Issue 9, Pages 1098–1100, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0118.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in