Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 72, Issue 9


Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream

Filip Beneš
  • Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-12844, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jakub Horecký
  • Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-12844, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takaaki Senoo
  • Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-12844, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lenka Kamasová
  • Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-12844, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Lamačová
  • Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolana Tátosová
  • Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-12844, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David W. Hardekopf
  • Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-12844, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Evžen Stuchlík
  • Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0121


A study of differences in the water chemistry and macroinvertebrate composition after a decade was performed in a strongly acidified mountain stream in the Brdy Mountains. In 1999 and again in 2010 we carried out monthly sampling of stream water and macroinvertebrates. We detected significantly lower concentrations of SO42, Ca2+, Mg2+, Na+, NH4+, Cl and F ions, reactive aluminium (R-Al) and its toxic form Aln+, and significantly higher concentrations of total organic carbon (TOC) between 1999 and 2010, possibly indicating recovery of this stream from acidification, even though there was no significant difference in pH. The signs of a biological recovery from acidification included the first occurrences of less acid-tolerant macroinvertebrate taxa: the stonefly Diura bicaudata and the caddisfly Rhyacophila sp. We observed higher taxonomic richness in 2010 compared to 1999 and found several species typical of standing waters plus a few rare species. This could partly be attributed to the effects of logging in the catchment. If recovery from acidification continues, we expect a return of other less acid-tolerant taxa to this strongly acidified stream.

This article offers supplementary material which is provided at the end of the article.

Key words: acidified mountain stream; macroinvertebrates; logging; hydrological patterns; recovery

Electronic supplementary material. The online version of this article (DOI: 10.1515/biolog-2017-0121) contains supplementary material, which is available to authorized users.


  • Banks J.L., Li J. & Herlihy A.T. 2007. Influence of clearcut logging, flow duration, and season on emergent aquatic insects in headwater streams of the Central Oregon Coast Range. J. North Am. Benthol. Soc. 26 (4): 620–632. CrossrefGoogle Scholar

  • Boukal D.S., Boukal M., Fikáček M., Hájek J., Klečka J., Skalický S., Šťastný J. & Trávníček D. 2007. Katalog vodních brouků České republiky. Catalogue of water beetles of the Czech Republic (Coleoptera: Sphaeriusidae, Gyrinidae, Haliplidae, Noteridae, Hygrobiidae, Dytiscidae, Helophoridae, Georissidae, Hydrochidae, Spercheidae, Hydrophilidae, Hydraenidae, Scirtidae, Elmidae, Dryopidae, Limnichidae, Heteroceridae, Psephenidae). Klapalekiana 43 (Suppl.): 1–289.Google Scholar

  • Boulton A.J. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biol. 48 (7): 1173–1185. CrossrefGoogle Scholar

  • Braukmann U. & Biss R. 2004. Conceptual study – An improved method to assess acidification in German streams by using benthic macroinvertebrates. Limnologica 34 (4): 433–450. CrossrefGoogle Scholar

  • Brooks R.T., Nislow K.H., Lowe W.H., Wilson M.K. & King D.I. 2012. Forest succession and terrestrial-aquatic biodiversity in small forested watersheds: a review of principles, relationships and implications for management. Forestry – Int. J. Forest Res. 85 (3): 315–328. CrossrefGoogle Scholar

  • Dangles O.J. & Guérold F.A. 2000. Structural and functional responses of benthic macroinvertebrates to acid precipitation in two forested headwater streams (Vosges Mountains, northeastern France). Hydrobiologia 418 (1): 25–31. CrossrefGoogle Scholar

  • Driscoll C.T. 1984. A procedure for the fractionation of the aqueous aluminum in dilute acidic waters. Int. J. Envir. Anal. Chem. 16: 267–283. CrossrefGoogle Scholar

  • Driscoll C.T. 1985. Aluminum in acidic surface waters: Chemistry, transport and effects. Envir. Health Perspect. 63: 93–104. CrossrefGoogle Scholar

  • Fjellheim A. & Raddum G.G. 1990. Acid precipitation: Biological monitoring of streams and lakes. Sci. Total Envir. 96 (12): 57–66. CrossrefGoogle Scholar

  • Frost S., Huni A. & Kershaw W.E. 1971. Evaluation of kicking technique for sampling stream bottom fauna. Can. J. Zool. 49: 167–173. CrossrefGoogle Scholar

  • Garmo Ø.A., Skjelkvåle B.L., de Wit H.A., Colombo L., Curtis C., Fölster J., Hoffmann A., Hruška J., HØgåsen T., Jeffries D.S., Keller W.B., Krám P., Majer V., Monteith D.T., Paterson A.M., Rogora M., Rzychon D., Steingruber S., Stoddard J.L., Vuorenmaa J. & Worsztynowicz A. 2014. Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water, Air, and Soil Pollution 225 (3): 1880. CrossrefGoogle Scholar

  • Gray C., Hildrew A.G., Lu X., Ma A., McElroy D., Monteith D., O’Gorman E., Shilland E. & Woodward G. 2016. Recovery and nonrecovery of freshwater food webs from the effects of acidification. Adv. Ecol. Res. 55: 475–534. CrossrefGoogle Scholar

  • Guérold F., Vein D., Jacquemin G. & Pihan J.C. 1995: The macroinvertebrate communities of streams draining a small granitic catchment exposed to acidic precipitations (Vosges Mountains, northeastern France). Hydrobiologia 300/301: 141–148. CrossrefGoogle Scholar

  • Hardekopf D.W., Horecký J., Kopáček J. & Stuchlík E. 2008. Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic). Hydrol. Earth Syst. Sci. 12: 479–490. CrossrefGoogle Scholar

  • Horecký J. 2003. Zhodnocení vlivu kyselé atmosférické depozice na chemismus a oživení horských potoků v ČR [Evaluation of the impact of acid atmospheric deposition on chemistry and biology of mountain streams in the Czech Republic]. Charles University in Prague, Faculty of Science, PhD thesis, 69 pp.Google Scholar

  • Horecký J., Rucki J., Krám P., Křeček J., Bitušík P., Špaček J. & Stuchlík E. 2013. Differences in benthic macroinvertebrate structure of headwater streams with extreme hydrochemistry. Biologia 68 (2): 303–313. CrossrefGoogle Scholar

  • Horecký J., Stuchlík E., Chvojka P., Bitušík P., Liška M., Pšenáková P. & Špaček J. 2002. Effects of acid atmospheric deposition on chemistry and benthic macroinvertebrates of forest streams in the Brdy Mts (Czech Republic). Acta Soc. Zool. Bohem. 66: 189–203.Google Scholar

  • Horecký J., Stuchlík E., Chvojka P., Hardekopf D.W., Mihaljevič M. & Špaček J. 2006. Macroinvertebrate community and chemistry of the most atmospherically acidified streams in the Czech Republic. Water, Air, and Soil Pollution 173: 261–272. CrossrefGoogle Scholar

  • Hruška J., Krám P., McDowell W.H. & Oulehle F. 2009. Increased dissolved organic carbon (DOC) in Central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Envir. Sci. Technol. 43: 4320–4326. CrossrefGoogle Scholar

  • Hruška J., Krám P., Moldan F., Oulehle F., Evans C.D., Wright R.F., Kopáček J. & Cosby B.J. 2014. Changes in soil dissolved organic carbon affect reconstructed history and projected future trends in surface water acidification. Water, Air, and Soil Pollution 225: 2015. CrossrefGoogle Scholar

  • Hruška J., Moldan F. & Krám P. 2002. Recovery from acidification in central Europe – observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic. Envir. Pollut. 120: 261–274. CrossrefGoogle Scholar

  • Kopáček J., Fluksová H., Hejzlar J., Kaňa J., Porcal P. & Turek J. 2017. Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment. Sci. Total Envir. 584585: 971–981. CrossrefGoogle Scholar

  • Kopáček J., Fluksová H., Hejzlar J., Kaňa J., Porcal P., Turek J. & Žaloudík J. 2013. Chemistry of tributaries to Plešné and Čertovo lakes during 1998–2012. Silva Gabreta 19 (3): 105–137.Google Scholar

  • Kopáček J., Hejzlar J., Kaňa J., Porcal P. & Turek J. 2016. The sensitivity of water chemistry to climate in a forested, nitrogen-saturated catchment recovering from acidification. Ecol. Indic. 63: 196–208. CrossrefGoogle Scholar

  • Kopáček J., Hejzlar J. & Mosello R. 2000. Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Res. 34: 3598–3606. CrossrefGoogle Scholar

  • Kopáček J., Stuchlík E., Veselý J., Schaumburg J., Anderson I.C., Fott J., Hejzlar J. & Vrba J. 2002. Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water, Air and Soil Pollution, Focus 2: 91–114. CrossrefGoogle Scholar

  • Kopáček J. & Veselý J. 2005. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmosph. Envir. 39: 2179–2188. CrossrefGoogle Scholar

  • Kopáček J., Veselý J. & Stuchlík E. 2001. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the industrial revolution (1850–2000). Hydrol. Earth Syst. Sci. 5: 391–405. CrossrefGoogle Scholar

  • Křeček J. & Hořická Z. 2001. Degradation and recovery of mountain watersheds: the Jizera Mountains, Czech Republic. Unasylva 207: 43–49.Google Scholar

  • Křeček J., Hořická Z. & Nováková J. 2006. Role of grassland ecosystems in protection of forested wetlands, pp. 49–58. . In: Krecek J. & Haigh M. (eds), Environmental Role of Wetlands in Headwaters Book Series: NATO Science Series IV Earth and Environmental Science 63, 347 pp. ISBN: 978-1-4020-4226-3CrossrefGoogle Scholar

  • Kullberg A. 1992. Benthic macroinvertebrate community structure in 20 streams of varying pH and humic content. Envir. Pollut. 78 (1-3): 103–106. CrossrefGoogle Scholar

  • Lamačová A., Hruška J., Krám P., Stuchlík E., Farda A., Chuman T. & Fottová D. 2014. Runoff trends analysis and future projections of hydrological patterns in small forested catchments. Soil Water Res. 9 (4): 169–181.Google Scholar

  • LaZerte B.D. 1984. Forms of aqueous aluminum in acidified catchments of central Ontario: A methodological analysis. Can. J. Fish Aquat. Sci. 41 (5): 766–776. CrossrefGoogle Scholar

  • Malcolm I.A., Gibbins C.N., Fryer R.J., Keay J., Tetzlaff D. & Soulsby C. 2014. The influence of forestry on acidification and recovery: Insights from long-term hydrochemical and invertebrate data. Ecol. Indic. 37: 317–329. CrossrefGoogle Scholar

  • Monteith D.T., Hildrew A.G., Flower R.J., Raven P.J., Beaumont W.R.B., Collen P., Kreiser A.M., Shilland E.M. & Winterbottom J.H. 2005. Biological responses to the chemical recovery of acidified fresh waters in the UK. Envir. Pollut. 137: 83–101. CrossrefGoogle Scholar

  • Monteith D.T., Stoddard J.L., Evans C.D., de Wit H.A., Forsius M., H⊘gåsen T., Wilander A., Skjelkvåle B.L., Jeffries D.S., Vuorenmaa J., Keller B., Kopáček J. & Veselý J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–540. CrossrefGoogle Scholar

  • Murphy J.F., Winterbottom J.H., Orton S., Simpson G.L., Shilland E.M. & Hildrew A.G. 2014. Evidence of recovery from acidification in the macroinvertebrate assemblages of UK fresh waters: A 20-year time series. Ecol. Indic. 37: 330–340. CrossrefGoogle Scholar

  • Oulehle F., Chuman T., Hruška J., Krám P., McDowell W.H., Myška O., Navrátil T. & Tesař M. 2017. Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry 132: 251–272. CrossrefGoogle Scholar

  • QGIS Development Team 2014. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Reid D.J., Quinn J.M. & Wright-Stow A.E. 2010. Responses of stream macroinvertebrate communities to progressive forest harvesting: Influences of harvest intensity, stream size and riparian buffers. Forest Ecol. Manage. 260 (10): 1804–1815. CrossrefGoogle Scholar

  • Řezníčková P., Tajmrová L., Pařil P. & Zahrádková S. 2013. Effects of drought on the composition and structure of benthic macroinvertebrate assemblages – a case study. Acta Univ. Agricult. Silvicult. Mendel. Brun. 61 (6): 1853–1865. CrossrefGoogle Scholar

  • Scheibová D. & Helešic J. 1999. Hydrobiological assessment of stream acidification in the Czech-Moravian highland, Czech Republic. Scripta Fac. Sci. Nat. Univ. Masaryk. Brun. Biol.25 (1): 13–32.Google Scholar

  • Soldán T., Zahrádková S., Helešic J., Dušek L. & Landa V. 1998. Distributional and quantitative patterns of Ephemeroptera and Plecoptera in the Czech Republic: A possibility of detection of long-term environmental changes of aquatic biotopes. Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Biol. 98: 1–305. ISBN: 80-210-1870-4Google Scholar

  • Speirs D.C., Gurney W.S.C., Hildrew A.G. & Winterbottom J.H. 2000. Long-term demographic balance in the Broadstone stream insect community. J. Anim. Ecol. 69: 45–58. CrossrefGoogle Scholar

  • Stuchlík E., Appleby P., Bitušík P., Curtis C., Fott J., Kopáček J., Pražáková M., Rose N., Strunecký O. & Wright R.F. 2002. Reconstruction of long-term changes in lake water chemistry, zooplankton and benthos of a small acidified highmountain lake: MAGIC modelling and palaeolimnological analysis. Water, Air and Soil Pollution, Focus 2: 127–138. CrossrefGoogle Scholar

  • Stuchlík E., Hořická Z., Prchalová M., Křeček J. & Barica J. 1997. Hydrobiological investigation of three acidified reservoirs in the Jizera Mountains, the Czech Republic, during the summer stratification. Can. Tech. Rep. Fish. Aquat. Sci. 2155: 56–64.Google Scholar

  • Svitok M., Novikmec M., Bitušík P., Máša B., Oboňa J., Očadlík M. & Michalková E. 2014. Benthic communities of low-order streams affected by acid mine drainages: A case study from Central Europe. Water 6: 1312–1338. CrossrefGoogle Scholar

  • Ungermanová L., Kolaříková K., Stuchlík E., Senoo T., Horecký J., Kopáček J., Chvojka P., Tátosová J., Bitušík P. & Fjellheim A. 2014. Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. Biologia 69 (9): 1190–1201. CrossrefGoogle Scholar

  • Veselý J. & Majer V. 1998. Hydrogeochemical mapping of Czech freshwaters. Bull. Czech Geol. Surv./Věstník Českého Geologického Ústavu 73: 183–192.Google Scholar

  • Vrba J., Kopáček J., Fott J. & Nedbalová L. 2014. Forest dieback modified plankton recovery from acidic stress. AMBIO – J. Human Envir. 43 (2): 207–217. CrossrefGoogle Scholar

  • Waringer J. & Graf W. 1997. Atlas der Österreichischen Köcherfliegenlarven unter Einschluß der angrenzenden Gebiete. Facultas-Universitätsverlag, Wien, 287 pp. ISBN-10: 3850764117, ISBN-13: 978-3850764117Google Scholar

  • Yoshimura M. 2012. Effects of forest disturbances on aquatic insect assemblages. Entomol. Sci. 15: 145–154. CrossrefGoogle Scholar

About the article

Received: 2016-12-11

Accepted: 2017-07-14

Published Online: 2017-09-30

Published in Print: 2017-09-26

Citation Information: Biologia, Volume 72, Issue 9, Pages 1049–1058, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0121.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in