Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 9

Issues

Antimicrobial activity and membrane interaction mechanism of the antimicrobial peptides derived from Rana chensinensis with short sequences

Min Shen
  • School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weibing Dong
  • School of Life Science, Liaoning Normal University, Dalian, 116081, People’s Republic of China
  • State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jun Qian / Li Zou
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0122

Abstract

The antimicrobial peptide chensinin-1b is a potential therapeutic agent against bacterial infection, which was derived from chensinin-1, a naturally occurring antimicrobial peptide derived from Chinese brown frog Rana chensinensis. In a membrane environment, the NMR structure of chensinin-1b showed an α-helical segment between the residues Arg8 to Arg13. To characterize the relationship between the structure and activity of chensinin-1b, the α-helical segment was truncated from the whole sequence, and the new peptides P-1 and P-3 were obtained with sequences of HWRRFWHR and WRRFWHR, respectively. The peptides showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. To improve the antimicrobial activities of P-1 and P-3, histidine residues in the sequence were replaced by arginines to increase their cationicity, which enhanced the antimicrobial activities of the new analogs P-2 (RWRRFWRR) and P-4 (WRRFWRR) by approximately 4-fold. The helicity of the peptides was completely disrupted, and the peptides did not show the regular secondary structural conformations in a membrane environment. Membrane depolarization studies demonstrated that the four peptides exerted their antimicrobial effects by damaging the cytoplasmic membrane. Of these peptides, P-4 exhibited the strongest depolarization ability, which indicated a strong ability to permeabilize the outer membrane and damage the integrity of the cytoplasmic membrane. Dynamic-light-scattering experiments demonstrated that P-1, P-3 and P-4 could dissociate lipopolysaccharide (LPS) micelles, which indicated that the peptides were able to traverse the LPS leaflet. These data suggest that the peptide P-4 could be a promising molecule for the development of peptide antibiotics with short sequences.

Key words: antimicrobial peptides; structure-activity relationship; depolarization; bacterial membrane; lipopolysaccharide

References

  • Andreu D. & Rivas L. 1998. Animal antimicrobial peptides: an overview. Biopolymers 47: 415–433.CrossrefPubMedGoogle Scholar

  • Chen Y., Mant C.T. & Hodges R.S. 2007. Preparative reversedphase high-performance liquid chromatography collection efficiency for an antimicrobial peptide on columns of varying diameters (1 mm to 9.4 mm I.D.). J. Chromatogr. A 1140: 112–120.CrossrefGoogle Scholar

  • Coccia C., Rinaldi A.C., Luca V., Barra D., Bozzi A., Di Giulia A., Veerman E.C. & Mangoni M.L. 2011. Membrane interaction and antibacterial properties of two mildly cationic peptide diastereomers, bombinins H2 and H4, isolated from Bombina skin. Eur. Biophys. J. 40: 577–588.Web of ScienceCrossrefPubMedGoogle Scholar

  • Conlon J.M., Kolodziejek J. & Nowotny N. 2004. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta 1696: 1–14.CrossrefGoogle Scholar

  • Dong W., Dong Z., Mao X., Sun Y., Li F. & Shang D. 2016. Structure-activity analysis and biological studies of chensinin-1b analogues. Acta Biomaterialia 37: 59–68.Web of SciencePubMedCrossrefGoogle Scholar

  • Epand R.F., Schmitt M.A., Gellman S.H. & Epand R.M. 2006. Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides. Biochim. Biophys. Acta 1758: 1343–1350.CrossrefPubMedGoogle Scholar

  • Guan-Guerra E., Santos-Mendoza T., Lugo-Reyes S.O. & Teran L.M. 2010. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin. Immunol. 135: 1–11.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Hancock R.E.W. & Farmer S. 1993. Mechanism of uptake of deglucoteicoplanin amide derivatives across outer membranes of Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37: 453–456.PubMedCrossrefGoogle Scholar

  • Hancock R.E.W. & Sahl H.G. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551–1557.CrossrefGoogle Scholar

  • Ishibashi J., Saido-Sakanaka H., Yang J., Sagisaka A. & Yamakawa M. 1999. Purification, cDNA cloning and modification of a defensin from the coconut rhinoceros beetle, Oryctes rhinoceros. Eur. J. Biochem. 266: 616–623.PubMedCrossrefGoogle Scholar

  • Kim J.Y., Park S.C., Yoon M.Y., Hahm K.S. & Park Y. 2011. Cterminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria. Amino Acids 40: 183–195.CrossrefGoogle Scholar

  • Lequin O., Ladram A., Chabbert L., Bruston F., Convert O., Vanhoye D., Chassaing G., Nicolas P. & Amiche M. 2006. Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry 45: 468–480.PubMedCrossrefGoogle Scholar

  • Levy S.B. 1998. Multidrug resistance – a sign of the times. N. Engl. J. Med. 338: 1376–1378.CrossrefPubMedGoogle Scholar

  • Li Y., Xiang Q., Zhang Q., Huang Y. & Su Z. 2012. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37: 207–215.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Loh B., Grant C., & Hancock, R.E. 1984. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 26: 546–551.PubMedCrossrefGoogle Scholar

  • Matsuzaki K., Sugishita K.I. & Miyajima K. 1999. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett. 449: 221–224.PubMedCrossrefGoogle Scholar

  • Mitchell J.B., Nandi C.L., MaDonald I.K., Thornton J.M. & Price, S.L. 1994. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J. Mol. Biol. 239: 315–331.CrossrefPubMedGoogle Scholar

  • Osterholm M.T. 1996. Emerging infectious diseases. A real public health crisis? Postgrad. Med. J. 100: 15–16, 21, 25–26.Google Scholar

  • Pal T., Abraham B., Sonnevend A., Jumaa P. & Conlon J.M. 2006. Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Int. J. Antimicrob. Agents 27: 525–529.CrossrefPubMedGoogle Scholar

  • Shang D., Sun Y., Wang C., Wei S., Ma L. & Sun L. 2012. Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis. Appl. Microbiol. Biotechnol. 96: 1551–1560.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Shang D., Yu F., Li J., Zheng J., Zhang L. & Li, Y. 2009. Molecular cloning of cDNAs encoding antimicrobial peptide precursors from the skin of the Chinese brown frog, Rana chensinensis. Zoolog. Sci. 26: 220–226.PubMedCrossrefGoogle Scholar

  • Sun Y., Dong W., Sun L., Ma L. & Shang, D. 2015. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Biomaterials 37: 299–311.Web of ScienceCrossrefPubMedGoogle Scholar

  • van Kan E.J., Demel R.A., van der Bent A. & de Kruijff B. 2003. The role of the abundant phenylalanines in the mode of action of the antimicrobial peptide clavanin. Biochim. Biophys. Acta 1615: 84–92.PubMedCrossrefGoogle Scholar

  • Walsh C. 2000. Molecular mechanisms that confer antibacterial drug resistance. Nature 406: 775–781.CrossrefPubMedGoogle Scholar

  • Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.PubMedCrossrefGoogle Scholar

About the article

* The first two authors contributed equally to this work.


Received: 2017-04-24

Accepted: 2017-09-15

Published Online: 2017-09-30

Published in Print: 2017-09-26


Citation Information: Biologia, Volume 72, Issue 9, Pages 1089–1097, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0122.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in