Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 72, Issue 9


Isolation and expression analyses of KLUH gene in developing seeds and enhanced seed oil in KLUH overexpressing Brassica juncea transgenics

Siddanna Savadi
  • Corresponding author
  • ICAR – Indian Institute of Wheat and Barley Research, Regional station, Flowerdale, Shimla, 171002, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Deepak Singh Bisht
  • ICAR – National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shripad Ramachandra Bhat
  • ICAR – National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-30 | DOI: https://doi.org/10.1515/biolog-2017-0123


Improving oil yield of Indian mustard (Brassica juncea) is exigent as it is a major oilseed crop of Indian subcontinent, which has severe shortage of vegetable oil production in the world. Some of the regulators of seed development have been shown to improve oil yield in Arabidopsis. Arabidopsis KLUH (AtKLUH), a maternal regulator of seed size, has been shown to control seed oil content. In this study, we identified three homologs of AtKLUH in B. juncea, BjKLUH1, BjKLUH2-1 and BjKLUH2-2. We observed that BjKLUH1 differentially expresses in developing seeds in B. juncea accessions with varying seed size and oil content. Further, analyses for seed oil content in B. juncea transgenics carrying AtKLUH demonstrated an increase in seed oil up to 8.3% compared to wild-type plants. The results of this study suggest that KLUH may have a role in seed development and is a good candidate for engineering seed oil accumulation in B. juncea.

This article offers supplementary material which is provided at the end of the article.

Key words: fatty acid; seed coat; KLUH; gene overexpression


  • Adamski N.M., Anastasiou E., Eriksson S., O’Neill C.M. & Lenhard M. 2009. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc. Natl. Acad. Sci. USA 106: 20115–20120.CrossrefGoogle Scholar

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.CrossrefPubMedGoogle Scholar

  • An D. & Suh M.C. 2015. Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa. Plant Biotechnol. Rep. 9: 137–148.Web of ScienceCrossrefGoogle Scholar

  • Anastasiou E., Kenz S., Gerstung M., MacLean D., Timmer J., Fleck C. & Lenhard M. 2007. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev. Cell 13: 843–856.Web of ScienceCrossrefPubMedGoogle Scholar

  • Anisimova M. & Gascuel O. 2006. Approximate likelihood ratio test for branches: a fast accurate and powerful alternative. Syst. Biol. 55: 539–552.CrossrefPubMedGoogle Scholar

  • Bak S., Beisson F., Bishop G., Hamberger B., Höfer R., Paquette S. & Werck-Reichhart D. 2011. Cytochromes P450. Arabidopsis Book 9: e0144.CrossrefGoogle Scholar

  • Baud S., Boutin J.P., Miquel M., Lepiniec L. & Rochat C. 2002. An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 40: 151–160.CrossrefGoogle Scholar

  • BishnoiK.C. & Singh K. 1979. Effect of sowing dates varieties and nitrogen levels on yield and yield attributes of raya. Indian J. Agron. 24: 123–129.Google Scholar

  • Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540–552.PubMedCrossrefGoogle Scholar

  • Cernac A., Andre C., Hoffmann-Benning S. & Benning C. 2006. WRI1 is required for seed germination and seedling establishment. Plant Physiol. 141: 745–757.CrossrefPubMedGoogle Scholar

  • Cernac A. & Benning C. 2004. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 40: 575–585.CrossrefPubMedGoogle Scholar

  • Chung J., Babka H.L., Graef G.L., Staswick P.E., Lee D.J. & Cregan P.B. 2003. The seed protein oil and yield QTL on soybean linkage group I. Crop Sci. 43: 1053–1067.CrossrefGoogle Scholar

  • Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., Claverie J.M. & Gascuel O. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36: W465–W469.Web of ScienceGoogle Scholar

  • Diepenbrock W. 2000. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res. 67: 35-49.CrossrefGoogle Scholar

  • Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797.CrossrefPubMedGoogle Scholar

  • Fatihi A., Zbierzak A.M. & Dormann P. 2013. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds. Plant Physiol. 163: 973–985.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Garcia D., Fitz Gerald J.N. & Berger F. 2005. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17: 52–60.CrossrefPubMedGoogle Scholar

  • Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307–321.Google Scholar

  • Jako C., Kumar A., Wei Y., Zou J., Barton D.L., Giblin E.M. & Taylor D.C. 2001. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 126: 861–874.PubMedCrossrefGoogle Scholar

  • Jofuku K.D., Omidyar P.K., Gee Z. & Okamuro J.K. 2005. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc. Natl. Acad. Sci. USA. 102: 3117–3122.CrossrefGoogle Scholar

  • Jönsson R. 1978. Breeding for improved oil and meal quality in rape (Brassica napus L.) and turnip rape (Brassica campestris L.) Hereditas 87: 205–218.Google Scholar

  • Katepa-Mupondwa F., Raney J.P. & Rakow G. 2005. Recurrent selection for increased protein content in yellow mustard (Sinapis alba L.). Plant Breed. 124: 382–387.CrossrefGoogle Scholar

  • Lewers K.S., StMartin S.K., Hedges B.R. & Palmer R.G. 1998. Testcross evaluation of soybean germplasm. Crop Sci. 38: 1143–1149.CrossrefGoogle Scholar

  • Ma M., Zhao H., Li Z., Hu S., Song W. & Liu X. 2015. TaCYP78A5 regulates seed size in wheat (Triticum aestivum). J. Exp. Bot. 67: 1397–1410.Web of SciencePubMedGoogle Scholar

  • Martínez-Andújar C., Martin R.C. & Nonogaki H. 2012. Seed traits and genes important for translational biology: highlights from recent discoveries. Plant Cell Physiol. 53: 5–15.Web of SciencePubMedCrossrefGoogle Scholar

  • Murray H.G. & Thompson W.F. 1980. Rapid isolation of high molecular weight DNA. Nucleic Acids Res. 8: 4321–4325.PubMedCrossrefGoogle Scholar

  • Nagasawa N., Hibara K., Heppard E.P., Vander Velden K.A., Luck S., Beatty M., Nagato Y. & Sakai H. 2013. GIANT EMBRYO encodes CYP78A13 required for proper size balance between embryo and endosperm in rice. Plant J. 75: 592–605.CrossrefWeb of SciencePubMedGoogle Scholar

  • Okushima Y., Mitina I., Quach H.L. & Theologis A. 2005. AUXIN RESPONSE FACTOR2 (ARF2): a pleiotropic developmental regulator. Plant J. 43: 29–46.CrossrefGoogle Scholar

  • Olsson G. 1960. Some relations between number of seeds per pod seed size and oil content and the effects of selection for these characters in Brassica and Sinapis. Hereditas 46: 29–70.Google Scholar

  • Qian W., Sass O., Meng J., Li M., Frauen M. & Jung C. 2007. Heterotic patterns in rapeseed (B. napus L.): I. Crosses between spring and Chinese semi-winter lines. Theor. Appl. Genet. 115: 27–34.Web of ScienceCrossrefGoogle Scholar

  • Radchuk V. & Borisjuk L. 2014. Physical metabolic and developmental functions of the seed coat. Front. Plant Sci. 5: 510.PubMedWeb of ScienceGoogle Scholar

  • Ramanathan T. 2004. Applied genetics of oilseed crops. Daya Publishing House, ISBN: 978-8170353201, 448 pp.Google Scholar

  • Ramchiary N., Padmaja K.L., Sharma S., Gupta V., Sodhi Y.S., Mukhopadhyay A., Arumugam N., Pental D. & Pradhan A.K. 2007. Mapping of yield influencing QTL in Bjuncea: implications for breeding of major oilseed crop of dry land areas. Theor. Appl. Genet. 115: 807–817.CrossrefGoogle Scholar

  • Roesler K., Shen B., Bermudez E., Li C., Hunt J., Damude H.G., Ripp K.G., Everard J.D., Booth J.R., Castaneda L., Feng L. & Meyer K. 2016. An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiol. 171: 878–893.PubMedWeb of ScienceGoogle Scholar

  • Saran G. & De R. 1979. Influence of seeding dates varieties and rates and methods of nitrogen application on the seed yield and quality of rapeseed grown on rainfed land. Indian J. Agricult. Sci. 49: 197–201.Google Scholar

  • Savadi S., Lambani N., Kashyap P.L. & Bisht D.S. 2016a. Genetic engineering approaches to enhance oil content in oilseed crops. Plant Growth Regul. .CrossrefGoogle Scholar

  • Savadi S., Naresh V., Kumar V. & Bhat S.R. 2016b. Seed-specific overexpression of Arabidopsis DGAT1 in Indian mustard Brassica juncea increases seed oil content and seed weight. Botany 94: 177–184.CrossrefGoogle Scholar

  • Savadi S., Naresh V., Kumar V., Dargan S., Gupta N.C., Chamola R. & Bhat S.R. 2015. Effect of overexpression of Arabidopsis thaliana SHB1 and KLUH genes on seed weight and yield contributing traits in Indian mustard (Brassica juncea L Czern). Indian J. Genet. Plant Breed. 75: 349–356.CrossrefWeb of ScienceGoogle Scholar

  • Shen B., Sinkevicius K.W., Selinger D.A. & Tarczynski M.C. 2006. The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol. Biol. 60: 377–387.CrossrefPubMedGoogle Scholar

  • Shi L., Katavic V., Yu Y., Kunst L. & Haughn G. 2012. Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produces more oil. Plant J. 69: 37–46.CrossrefGoogle Scholar

  • Sun R., Ye R., Gao L., Zhang L., Wang R., Mao T., Zheng Y., Li D. & Lin Y. 2017. Ectopic expression of CoWRI1 from coconut (Cocos nucifera L.) endosperm changes the seeds oil content in transgenic Arabidopsis and rice (Oryza sativa L.). Front. Plant Sci. 8: 63.Web of SciencePubMedGoogle Scholar

  • Taylor D.C., Katavic V., Zou J., MacKenzie S.L., Keller W.A., An J. & Ge Y. 2002. Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content erucic acid content and seed yield. Mol. Breed. 8: 317–322.CrossrefGoogle Scholar

  • Tian Y., Zhang M., Hu X., Wang L., Dai J., Xu Y. & Chen F. 2016. Overexpression of CYP78A98 a cytochrome P450 gene from Jatropha curcas L increases seed size of transgenic tobacco. Electronic J. Biotechnol. 19: 15–22.CrossrefGoogle Scholar

  • Vigeolas H., Huhn D. & Geigenberger P. 2011. Nonsymbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol. 155: 1435–1444.Web of ScienceCrossrefGoogle Scholar

  • Vigeolas H., Möhlmann T., Martini N., Neuhaus H.E. & Geigenberger P. 2004. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiol. 136: 2676–2686.CrossrefGoogle Scholar

  • Wang H.Z, Lui G.H., Wang X.F., Liu J., Yang Q. & Hua W. 2009. Heterosis and breeding of high oil content in rapeseed (Brassica napus L.). 16th Australian Research Assembly on Brassicas Australian Oilseeds Federation, Ballarat, Victoria.Google Scholar

  • Wilcox J.R. 1998. Increasing seed protein in soybean with eight cycles of recurrent selection. Crop Sci. 38: 1536–1540.CrossrefGoogle Scholar

  • Yadava D.K. Vasudev S., Singh N., Mohapatra T. & Prabhu K.V. 2012. Breeding major oil crops: present status and future research needs, pp. 17–51. In: Gupta S. (ed.) Technological Innovations in Major World Oil Crops, Vol. 1. Springer, New York.Google Scholar

  • Zhao B., Dai A., Wei H., Yang S., Wang B., Jiang N. & Feng X. 2016. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol. Biol. 90: 33–47.Web of ScienceCrossrefPubMedGoogle Scholar

  • Zhou Y., Zhang X., Kang X., Zhao X., Zhang X. & Ni M. 2009. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21: 106–117.Web of ScienceCrossrefPubMedGoogle Scholar

About the article

Received: 2017-06-03

Accepted: 2017-09-15

Published Online: 2017-09-30

Published in Print: 2017-09-26

Conflict of interest: The authors declare no conflict of interest.

Citation Information: Biologia, Volume 72, Issue 9, Pages 1023–1030, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0123.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in