Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biodiversity Research and Conservation

The Journal of Adam Mickiewicz University

4 Issues per year

Open Access
Online
ISSN
1897-2810
See all formats and pricing
More options …
Just Accepted

Issues

Genetic Diversity of Leafy Liverwort Species (Jungermanniidae, Marchantiophyta) in Poland: Diversity of Leafy Liverwort Species with Various Reproductive Modes

Alina Bączkiewicz
Published Online: 2013-02-13 | DOI: https://doi.org/10.2478/v10119-012-0022-5

Abstract

This monograph presents results of research on genetic diversity of 8 leafy liverwort species differing in reproductive mode. The frst 4 species in Poland are regarded as sterile and reproduce only vegetatively: Bazzania trilobata, Trichoc-olea tomentella, Lophozia hatcheri, and Mylia anomala. The next 4 are fertile, including the monoecious Lepidozia reptans and Calypogeia integristipula as well as the dioecious Mylia taylorii and Tritomaria quinquedentata. For each species, 9-10 populations were sampled. In total, 4744 gametophytes from 73 populations were examined by isozyme analysis. The level of their genetic diversity (total, HT, and within populations, HS) was high, higher than in thallose liverworts, but comparable to the genetic diversity of mosses or even some species of vascular plants. Thus the traditional opinion that the entire group of liverworts has a much lower level of genetic diversity than mosses is erroneous, as it holds true only for thallose liverworts (Metzgeriidae and Marchantiopsida). My results indicate that the effect of reproductive mode on genetic diversity in leafy liverworts is lower than in vascular plants. Sterile and fertile species of liverworts exhibited similar levels of genetic diversity. Moreover, both groups included species that had both high and low levels of HT and HS. In fertile species, monoecious and dioecious species also did not differ signifcantly in genetic diversity, but dioecious liverworts had slightly higher total diversity (HT) than monoecious species. In most of the studied leafy liverworts, the share of genetic diversity within populations in the total genetic diversity of species is greater than between populations. The percentage share of variation among populations (ΦPT) in the total genetic variation was correlated with the total genetic diversity of the species (HT). In species with high HT, differences between populations tended to be rather small. By contrast, in species with lower HT, the percentage share of differentiation among populations in the total diversity of species was much higher. My results confrm theory, based on studies by Kimura, that the main causes of genetic diversity of bryophytes are neutral somatic mutations developing in various vegetative parts of plants. The separation of branches or other plant sections with somatic mutations, followed by the growth of new shoots, can increase the level of genetic diversity. The high level of genetic diversity in sterile liverworts indicates that vegetative reproduction has a greater infuence on the level of genetic diversity than recombination. My results suggest also that mutation rates are similar in closely related species, but species with a wider ecological range exhibit higher genetic diversity because the variability of habitats can infuence the rate and type of somatic mutations. Accordingly, species inhabiting more diverse environments may be more genetically diverse. Patches of the studied species generally consisted of several genotypes (MLGs). Two types of distribution of genotypes in patches were noticed. Patches of species with low total diversity (HT), were often dominated by 1-2 genotypes, which constituted the major part of a patch. In patches of species with higher HT, there was no tendency to form patches with predomination of a single genotype. Different genotypes constituted similar proportions of a patch. In all the studied leafy liverwort species there was a high degree of repeatability of the same genotypes (MLGs) in plants from various patches within the same population or in various populations. Probably the main cause of this is the independent repeatability of the same mutations in different specimens.

Keywords : Bryophyta; Bazzania trilobata; Trichocolea tomentella; Lophozia hatcheri; Mylia anomala; Lepidozia reptans; Calypogeia integristipula; Mylia taylorii; Tritomaria quinquedentata; genetic variation; population genetics; sterile and fertile species; population differentiation; breeding system; monoecious; dioecious

  • Adamczak M., Buczkowska K., Bączkiewicz A. & Wachowiak W. 2005. Comparison of allozyme variability in Polish populations of two species of Ptilidium Nees (Hepaticae) with contrasting degrees of sexual reproduction. Cryptogamie, Bryologie 26(2): 151-165.Google Scholar

  • Anderson L. E. 1963. Modern species concepts: Moses. Bryologist 66: 107-119.CrossrefGoogle Scholar

  • Anderson L. E. 1980. Cytology and reproductive biology of mosses. In: R. J. Taylor & A. E. Leviton (eds.). The mosses of North America, pp. 37-76. Pacific Division of the American Association of the Advancement of Science, San Francisco.Google Scholar

  • Akiyama H. & Hiraoka T. 1994. Allozyme variability within and Divergence among populations of the liverwort Conocephalum conicum (Marchantiales: Hepaticae) in Japan. J. Plant Res. 107: 307-320.CrossrefGoogle Scholar

  • Bączkiewicz A. & Buczkowska K. 2005. Genetic variability of the Aneura pinguis complex (Hepaticae) in central and western Europe. Biol. Letters 42(1): 61-72.Google Scholar

  • Bączkiewicz A. & Buczkowska K. 2006. Genetic variation of Ptilidium pulcherrimum populations from manager forests in Poland. In: P. Kočárek, V. Plášek & K. Mala chová (eds.). Environmental Changes and Biological Assessment III. Scripta Facultatis Rerum Naturalium Universitatis Ostraviensis 163: 108-113.Google Scholar

  • Bengtsson B. O. 2003. Genetic variation in organisms with sexual and asexual reproduction. J. Evol. Biol. 16: 189-199.Google Scholar

  • Bisang I. & Hedennäs L. 2005. Sex ratio patterns in dioecious bryophytes revisited. J. Bryol. 7: 207-219.CrossrefGoogle Scholar

  • Bischler H. & Boisselier-Duba yle M. C. 1997. Population Genetics and Variation in Liverworts. Advances in Bryology 6: 1-34.Google Scholar

  • Boisselier-Dubayle M. C. & Bischler H. 1997. Enzyme polymorphism in Preissia quadrata (Hepaticae, Marchantiaceae). Pl. Syst. Evol. 205: 73-84.Google Scholar

  • Boisselier-Dubayle M. C., Jubier M.F., Lejeune B. & Bischler H. 1995. Genetic variability in the three subspecies of Marchantia polymorpha (Hepaticae): isozymes, RFLP and RAPD markers. Taxon 44: 363-376.CrossrefGoogle Scholar

  • Boisselier-Dubayle M. C., Lambourdiere J. & Bischler H. 1998a. Taxa delimitation in Reboulia investigated with morphological, cytological, and isozyme markers. Bryologist 101: 61-69.Google Scholar

  • Boisselier-Dubayle M. C., Lambourdiere J. & Bischler H. 1998b. The leafy liverwort Porella baueri (Porellaceae) is an allopolyploid. Pl. Syst. Evol. 210: 175-197.CrossrefGoogle Scholar

  • Bowker M. A., Stark L. R. McLetchie D. N. & Mishler B. D. 2000. Sex expression, skwed sex ratios, and microhabitat distribution in the dioecious desert moss Syntrochia caninervis (Pottiaceae). Am. J. Bot 87: 517-526.CrossrefPubMedGoogle Scholar

  • Buczkowska K. 2004. Genetic differentiation of Calypogeiafissa Raddi (Hepaticae, Jungermanniales) in Poland.Google Scholar

  • Pl. Syst. Evol. 247:187-201.Google Scholar

  • Buczkowska K., Sawicki J., Szczecińska M., Klama H., Milewicz M. & Bączkiewicz A. 2010. Genetic variation in liverwort Bazzania trilobata inferred from ISSR markers. J. Bryol. 32: 265-274.CrossrefGoogle Scholar

  • Cromberg N. 1996. Isozyme evidence of relationships within Sphagnum sect. Acutifolia Sphagnaceae, Bryophyta). Pl. Syst. Evol. 203: 41-64.Google Scholar

  • Cromberg N. 1998. Population structure and interspecific differentiation of the peat moss sister species Sphagnumrubellum and S. capillifolium (Sphagnaceae) in northern Europe. Pl. Syst. Evol. 209: 139-158.Google Scholar

  • Cromberg N. 2000a. Absence of variation in populations of the liverwort Plagochlila porelloides from northern Greece and southern Scandinavia. Lidbergia 25: 20-24.Google Scholar

  • Cromberg N. 2000b. Genetic diversity of the epiphytic Leucodon sciuroides in formerly glaciated versus nonglaciated parts of Europe. Heredity 84: 710-720.CrossrefGoogle Scholar

  • Cromberg N. 2002. Colonization dynamics of the clonal moss Hylocomium splendens on Islands in a Balticland uplift area: reproduction, genet distribution and genetic variation. J. Ecol. 90:925-935.CrossrefGoogle Scholar

  • Cromberg N., Anderson K., Wyatt R. & Odrzykoski I. J. 2003. Clonal distribution, fertility and sex ratios of the moss Plagionium affine (Bland.) T. Kop. In forest of contrasting age. J. Bryol. 25: 55-162.Google Scholar

  • Cromberg N., Mola u U. & Sonesson M. 1997. Genetic variability in the clonal bryophyte Hyloconium splendens at hierarchical geographical scales in Scandinavia. Heredity 78: 293-301.CrossrefGoogle Scholar

  • Crum H. 1972. The geographic origin of the mosses of North America’s eastern deciduous forest. J. Hattori Bot. Lab. 35: 269-298.Google Scholar

  • Damsholt K. 2002. Illustrated Flora of Nordic Liverworts and Hornworts. 837 pp. Nordic Bryol. Soc., Lund.Google Scholar

  • Dewey R. M. 1989. Genetic variation in the liverwort Ricciadictyospora (Ricciaceae, Hepaticopsida). Syst. Bot. 14(2): 155-167.CrossrefGoogle Scholar

  • During H. J. 1990. Clonal growth patterns among bryophytes. In: J. von Groenendael & H. de Kroon H. (eds.). Clonal growth in plants: regulation and function, pp.153-176. SPB Acadenic Publishing, The Hague, The Netherlands.Google Scholar

  • During H. J., Brugues M., Cros R. M. & Lloret F. 1988. The diaspore bank of bryophytes and ferns in the soil in some contrasting habitats around Barcelona, Spain. Lindbergia 13: 137-149.Google Scholar

  • Eckert C. G. 2002. The loss of sex in clonal plants. Evol. Ecol. 15: 501-520.Google Scholar

  • Eckert C. G. & Barrett S. C. H. 1993. Clonal reproduction and patterns of genotypic diversity in Decodonverticillatus (Lythraceae). Am. J. Bot. 80:1175-1182.CrossrefGoogle Scholar

  • Ellstrand N. C. & Roose M. L. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74: 123-131.CrossrefGoogle Scholar

  • Eppley S. M., Taylor P. J. & Jesson L. K. 2006. Self-fertilization in mosses: a comparison of heterozygote deficiency between species with combined versus separate sexes. Heredity (2006): 1-7.Google Scholar

  • Fager E. W. 1972. Diversity: a sampling study. Am. Nat. 106: 293-310.CrossrefGoogle Scholar

  • Freitas H. & Brehm A. 2001. Genetic diversity of the Macaronesian leafy liverwort Porella canariensis inferred from RAPD markers. Am. Genet. Assoc. 92: 339-345.Google Scholar

  • Gemmell A. R. 1950. Studies in the bryophyte I. The influence of sexual mechanism on varietal production and distribution of British music. New Phytol. 49: 64-71.CrossrefGoogle Scholar

  • Gottlieb L. D. 1981. Electrophoretic evidence and plant populations. Progress in Phytochem.7: 1-46.Google Scholar

  • Grundmann M., Ansell S. W., Russell S. J., Koch M. A. & Vogel J. C. 2007. Genetic structure of the widespread and common Maditerranean bryophyte Pleurochaetesquarrosa (Brid.) Lindb. (Pottiaceae) - evidence from nuclear and plastidic DNA sequence variation and allozymes. Mol. Ecol. 16: 709-722.CrossrefPubMedGoogle Scholar

  • Hamrick J. L. & Godt M. J. 1990. Allozyme diversity in plant species. In: A. H. D. Brown, M. T. Clegg, A. L. Kahler & B. S. Weir (eds.). Plant population genetics, breeding and genetic resources, pp. 3-63. Sunderland: Sinauer.Google Scholar

  • Heinrichs J., Hentschel J., Wilson R., Feldberg K. & Schneider H. 2007.Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 56(1): 31-44.Google Scholar

  • Hewitt G. M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-112.Google Scholar

  • Hock Zs., Szövényi P., Schneller J. J., Tóth Z. & Urmi E. 2008a. Bryophyte diaspore bank: a genetic memory? Genetic structure and genetic diversity of surface populations and diaspore bank in the Mannia fragrans (Antoniaceae). Am. J. Bot. 95(5): 542-548.CrossrefGoogle Scholar

  • Hock Zs., Szövényi P., Schneller J. J., Urmi E. &, Tóth Z. 2008b. Are sexual or asexual events determining the genetic structure of populations in the liverwort Manniafragrans? J. Bryol. 30: 66-73.CrossrefGoogle Scholar

  • Hock Zs., Szövényi P., Schnell er J. J., Urmi E. &Tóth Z. 2009. Population genetic consequences of the reproductive system in the liverwort Mannia fragrans. Pl. Ecol. 202: 123-134.CrossrefGoogle Scholar

  • Innes D. J. 1990. Microgeographic genetic variation in the haploid and diploid stages of the moss Polytrichumjuniperium Hedw. Heredity 64: 331-340.CrossrefGoogle Scholar

  • Itouga M., Yamaguchi T. & Deguchi H. 1999. Allozyme variability within and among populations in the liverwort Conocephalum japonicum (Marchantiales, Hepaticae). Hikobia 13: 89-96.Google Scholar

  • Itouga M., Yamaguchi T. & Deguchi H. 2002. Allozyme variability within and among population in the Asian liverworts Asterella liukiuensis. J. Bryol. 24: 267-276.CrossrefGoogle Scholar

  • Jendralski U. 1955. Die Jahresperiodizität der Entwicklung der Laubmoose im Rheinlande. Decheniana 108: 105-163.Google Scholar

  • Jonsson B. G. 1993. The bryophyte diaspore bank and role after small-scale disturbance in a boreal forest. J. Veg. Sci. 4: 819-826.CrossrefGoogle Scholar

  • Kim H. N., Haraha K. & Yamazaki T. 1996. Isozyme polymorphism and genetic structure of a liverwort Conocephalumconicum in natural populations of Japan. Genes Genet. Syst. 71: 225-235.Google Scholar

  • Kimura M. 1968. Evolutionary rate at the molecular level. Nature 217:624-626.CrossrefPubMedGoogle Scholar

  • Kimura M. & Ohta T. 1971. Protein polymorphism as a phase of molecular evolution. Nature 229: 467-469.PubMedCrossrefGoogle Scholar

  • Klama H. 2002. Distribution patterns of liverworts (Marchantiopsida) in natural forest communities (Białowieża Primeval Forest, NE Poland). 278 pp. Bielsko-Biała University press, Bielsko-Biała.Google Scholar

  • Klekowski E. J. J. 1988a. Mutation, Developmental Selection and Plant Evolution. 373 pp. Columbia University Press, New York, NY, USA.Google Scholar

  • Klekowski E. J. J. 1988b. Progressive cross- and self-sterility associated with aging in fern clones and perhaps other plants. Heredity 61: 247-253.CrossrefGoogle Scholar

  • Korpelainen H., Pohjamo M. & Laa ka-Lindberg S. 2005. How efficiently does bryophyte dispersal lead to gene flow? J. Hattori Bot. Lab. 97: 195-205.Google Scholar

  • Krzakowa M. & Szweykowski J. 1979. Isozyme polymorphism in natural populations of a liverwort, Plagiochilaasplenoides. Genetics 93: 711-719.PubMedGoogle Scholar

  • Lane D. M. 1985. A quantitative study of the mosses of eastern North America. Monogr. Syst. Bot. Missouri Bot. Gard. 11: 45-50.Google Scholar

  • Lienert J. 2004. Habitat fragmentation effects on fitness of plant populations - a review. J. Nat. Conser. 12: 53-72.Google Scholar

  • Longton R. E. 1976. Reproductive biology and evolutionary potential in bryophytes. J. Hattori Bot. Lab. 41: 205-223.Google Scholar

  • Longton R. E. 1997. Reproductive biology and life-history strategies. In: J. Cramer (ed.). Advances in Bryol. Vol 6, pp. 65-101. Gebrüder Borntraeger, Berlin.Google Scholar

  • Longton R. E. & Miles C. J. 1982. Studies on the reproductive biology of mosses. J. Hattori Bot. Lab. 52: 219-240.Google Scholar

  • Longton R. E. & Schuster R. M. 1983. Reproductive biology.In: R. M. Schuster (ed.). New manual of Bryology, vol.1, chapter 9, pp. 386-462. Hattori Bot. Lab. Nichinan, Japan.Google Scholar

  • Manly B. F. J. 1985. The Statistics of Natural Selection on Animal Populations, pp. 272-282. Chapman and Hall, London.Google Scholar

  • McDermott J. M. & McDonal d B. A. 1993. Gene flow in plant pathosystems. Annual Review of Phytopathology 31: 353-373.CrossrefGoogle Scholar

  • McLetchie D. N. 1996. Sperm limitation and genetic effects on fecundity in the dioecious liverwort Sphaerocarpostexanus. Sexual Plant Reproduction 9: 87-92.CrossrefGoogle Scholar

  • McLetchie D. N., Garcia-Ramos G. & Crowley P. H. 2002. Local sex-ratio dynamics: a model for the dioecious liverwort Marchantia inflexa. Evol. Ecol. 15:231-254.Google Scholar

  • Miles C. J. & Longton R. E. 1992. Deposition of moss spores in relation to distance from parent gametophytes. J. Bryol. 17: 355-368.CrossrefGoogle Scholar

  • Mischler B. D. 1988. Reproductive Ecology of Bryophytes. In: J. Lovett Doust & L. Lovett Doust L. (eds.). Plant Reproductive Ecology: Patterns and Strategies. Oxford University Press, New York.Google Scholar

  • Montagnes R. J. S., Bayer R. J. & Vitt D. H. 1993. Isozyme variation in the moss Meesia triquetra (Meesiaceae). J. Hattori Bot. Lab. 74: 155-170.Google Scholar

  • Moya M. T. 1993. Genetic variation in Marchantia chenopoda L. (Hepatophyta, Marchantiaceae) in Peurto Rico. Master thesis, University of Peurto Rico. Mayagüez.Google Scholar

  • Müller K. 1951-1958. Die Lebermoose Europas. Rabenhorst‘s Kryptogamen Flora von Deutschland, Oesterreich u. d. Schweiz. Akademische Verlagsgesellschaft Geest & Portig K.-G. Leipzig, pp. 631-635.Google Scholar

  • Nei M. 1972. Genetic distance between populations. Am. Nat. 106: 238-292.Google Scholar

  • Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of ScienceUSA 70: 3321-3323.Google Scholar

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.PubMedGoogle Scholar

  • Newton A. E. & Mishler B. D. 1994. The evolutionary significance of sexual reproduction in mosses. J. Hattori Bot. Lab. 76: 127-145.Google Scholar

  • Odrzykoski I. J. 1986. Genetic structure of natural populations of Conocephalum conicum. PhD. Thesis Adam Mickiewicz University, Poznań.Google Scholar

  • Odrzykoski I. J. & Szweykowski J. 1991. Genetic differentiation without concordant morphological divergence in the thallose liverwort Conocephalum conicum. Pl. Syst. Evol. 178: 135-151.Google Scholar

  • Paton J. A. 1999. The Liverwort Flora of the British Isles. Harley Books, Martins.Google Scholar

  • Peakall R. & Smouse P. 2006. GENALEX 6: genetic analysis in Exel. Population genetic softwere for teaching and research. Molecular Ecology Notes 6: 288-295.CrossrefGoogle Scholar

  • Pielou E. C. 1969. An introduction to mathematical ecology. 286 pp. Wiley-Interscience, New York.Google Scholar

  • Pohjamo M., Korpela inen H. & Kal inauskaite N. 2008. Restricted gene flow in the clonal hepatic Trichocoleatomentella in fragmented landscapes. Biol. Conservation 141: 1204-1217.CrossrefGoogle Scholar

  • Roads E. & Longton R. F. 2003. Reproductive biology and population studies in two annual shuttle mosses. J. Hattori Bot. Lab. 93: 305-318.Google Scholar

  • Schuster R. M. 1966. The Hepaticae and Anthocerotae of North America. Vol. 1, 802 pp. Columbia University Press, New York and London.Google Scholar

  • Schuster R. M. 1969. The Hepaticae and Anthocerotae of North America. Vol. 2, 1062 pp. Columbia University Press, New York and London.Google Scholar

  • Shaw A. J. 2000. Population ecology, population genetics, and microevolution. In: A. J. Shaw & B. Goff inet (eds.). Bryophyte Biology, pp. 369-402. Cambridge, Cambridge University Press.Google Scholar

  • Shaw A. J. & Srodon M. 1995. Clonal diversity in Sphagnumrubellum Wils. Bryologist 98: 261-264.CrossrefGoogle Scholar

  • Skotnicki M. L., Ninham J. A. & Selkirk P. M. 1999. Genetic diversity and dispersal of the moss Sarconeurumglaciale on Ross Island, East Antarctica. Mol. Ecol. 8: 753-762.CrossrefGoogle Scholar

  • Slatkin M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53-65.CrossrefGoogle Scholar

  • Snäll T., Ehrlén J. & Rydin H. 2005. Colonization-extinction dynamics in patch-tracking metapopulations: local conditions versus dispersal. Oikos 103:566-578.Google Scholar

  • Spagnuolo V., Muscariell o L., Cozzolino S., Cobianchi R. C. & Giordano S. 2007. Ubiquitous genetic diversity in ISSR markers between and within populations of the asexually producing moss Pleurochaete squarrosa. Plant Ecol. 188: 91-101.Google Scholar

  • StatSoft , INC , 2008. STATISTICA (data analysis software system), version 8.0.www.ststsoft.com.Google Scholar

  • Stenøien H. K. 1999. Are enzyme loci selectively neutral in haploid populations of nonvascular plants? Evolution 53(4): 1050-1059.CrossrefGoogle Scholar

  • Stenøien H. K. & Såsta d S. 1999. Genetic structure in three haploid peat mosses (Sphagnum). Heredity 82: 391-400.CrossrefPubMedGoogle Scholar

  • Stenøien H. K. & Såsta d S. 2001. Genetic variability in bryophytes: does mating system really matter? J. Bryol. 23: 313-318.CrossrefGoogle Scholar

  • Stoneburner A. R., Wyatt R. & Odrzykoski I. J. 1991. Applications of enzyme electrophoresis to bryophyte systematic and population biology. Advances in Bryology 4:1-27.Google Scholar

  • Szweykowski J. 1984. What do we know about the evolutionary process in bryophytes? J. Hattori Bot. Lab. 55: 209-218.Google Scholar

  • Szweykowski J. 2006. An annotated checklist of Polish liverworts and hornworts. In: Z. Mirek (ed.). Biodiversity of Poland, 4, 114 pp. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar

  • Szweykowski J. & Buczkowska K. 1996. Liverworts of Bieszczady Zachodnie Range (Polish Eastern Carpathians) - a vanishing relict boreal flora. Fragm. Flor. Geobot 41(2): 865-934.Google Scholar

  • Szweykowski J. & Buczkowska K. 2000. Sphagnum-Polytrichum hummocks - a bryologically neglected plant formation. Fragm. Flor. Geobot 45: 475-484.Google Scholar

  • Szweykowski J. & Odrzykoski I. J. 1990. Chemical differentiation of Aneura pinguis (L.) Dum. (Hepaticae, Aneuraceae) in Poland and some comments on applicationof enzymatic markers in bryology. In: H. D. Zinsmeister & R. Mues (eds.). Bryophytes Their Chemistry and Chemical Taxonomy, pp. 437-448. Clarendon Press, Oxford.Google Scholar

  • Thingsgaa rd K. 2001. Population structure and genetic diversity of the amphiatlantic haploid peatmoss Sphagnum affine (Sphagnopsida). Heredity 87: 485-496.CrossrefGoogle Scholar

  • Van der Velde M. & Bijlsma R. 2000. Amount and structure of intra- and interspecific genetic variation in the moss genus Polytrichum. Heredity 85:328-337.Google Scholar

  • Van der Velde M. & Bijlsma R. 2003. Phylogeography of five Polytrichum species within Europe. Biol. J. Linn. Soc. 78: 203-213.Google Scholar

  • Van der Velde M., Van de Zande L. & Bijlsma R. 2001. Genetic structur of Polytrichum formosum in relation to the breeding system as revealed by microsatellites. J. Evol. Biol. 14: 288-295.Google Scholar

  • Wachowiak-Zielińska M. & Zieliński R. 1995. Genetic variation of the haploid moss Pleurozium schreberi (Musci, Hylocomiaceae) from Poland. Fragm. Flor. Geobot 40(1): 417-423.Google Scholar

  • Wendel J. F. & Weeden N. F. 1989. Visualization and interpretation of plant isozymes. In: D. E. Solt is & P. S. Solt is (eds.). Isozymes in Plant Biology, pp. 5-45. Dioscorides Press, Portland, Oregon.Google Scholar

  • Wolf A. T., Howe R. W. & Hamrick J. L. 2000. Genetic diversity and population structure oft the serpentine endemic Calystegia collina (Convolvulaceae) in northern California. Am. J. Bot. 87: 1138-1146.CrossrefGoogle Scholar

  • Wyatt R. 1985. Terminology for bryophyte sexuality: Toward a unified system. Taxon 34: 420-425.CrossrefGoogle Scholar

  • Wyatt R. 1992. Conservation of rare and endangered bryophytes: input from population genetics. Biol. Conserv. 59;99-107.Google Scholar

  • Wyatt R. 1994. Population genetics of bryophytes in relation to their reproductive biology. J. Hattori Bot. Lab. 76: 147-157.Google Scholar

  • Wyatt R., Odrzykoski I. J. & Cromberg N. 2005. High levels of genetic variation in the haploid leafy liverwort Porella platyphylla from the southeastern United States. J. Bryol. 27: 247-252.CrossrefGoogle Scholar

  • Wyatt R., Odrzykoski I. J. & Stonenburner A. 1989a. Bryophyte isozymes: systematic and evolutionary implications. In: D. E. Soltis & P. S. Soltis (eds.). Isozymes in Plant Biology, pp. 221-240. Dioscorides Press, Portland, Oregon.Google Scholar

  • Wyatt R., Odrzykoski I. J. & Stonenburner A. 1989b. High level of genetic variability in the haploid moss Plagiomniumciliare. Evolution 43: 1085-1096.CrossrefGoogle Scholar

  • Wyatt R., Odrzykoski I. J. & Stonenburner A. 1992. Isozymes evidence of reticulate evolution in mosses: Plagiomniummedium is an allopolyploid of P. ellipticum × P. insigne. Syst. Bot. 17(4): 532-550.CrossrefGoogle Scholar

  • Wyatt R., Odrzykoski I. J. & Stonenburner A. 1993. Isozymes evidence regarding the origins of the allopolyploid moss Plagiomnium curvatulum. Lindbergia 18: 49-58.Google Scholar

  • Yeh F., Yang R. C., Boyle t., Ye Z. & Mao J. X. 2000. POPGEN version 1.32: A free program for the analysis of genetic variation among and within populations using co-dominant and dominant markers. Molecular Biology and Biotechnology Centre University of Alberta. Canada.Google Scholar

  • Zhu Y.-Q., Liu L., Wang Y.-F. & Shao X.-M. 2007. Genetic diversity and population structure of Brachyteciumrivulare Schimp. (Brchytheciaceae) from Foping Nature Reserve, Shaanxi, China, detected by RAPD markers. J. Bryol. 29:104-110.CrossrefGoogle Scholar

  • Zieliński R. 1984. Electrophoretic and cytological study of the Pellia epiphylla and P. borealis complex. J. Hattori Bot. Lab. 56: 263-269.Google Scholar

  • Zieliński R. 1987. Genetic variation of the liverwort genus Pellia with reference to Central European territory pp. 297. Szczeciński University, Szczecin.Google Scholar

  • Zieliński R., Szwykowski J. & Rutkowska E. 1985. A further electrophoretic study of peroxidase isozyme variation in Pellia epiphylla (L.) Dum. from Poland, with special reference to the status of Pellia borealis Lorbeer. Monogr. Syst. Bot. Missouri Bot. Gard. 11: 199-209.Google Scholar

  • Zieliński R. & Wachowiak-Zielińska M. 1994. Isoenzyme variation in Polish populations of Plagiochila asplenoides and P. porelloides (Hepaticae, Plagiochilaceae). Frag. Flor. Geobot. 39:503-509.Google Scholar

  • Zukerkandl E. & Pauling L. 1965. Evolutionary divergence and convergence in proteins. In: Bryson V., Vogel H.J. (eds.). Evolving genes and proteins, pp. 97-166. Academic Press, New York.Google Scholar

About the article

Published Online: 2013-02-13


Citation Information: Biodiversity: Research and Conservation, ISSN (Print) 1897-2810, DOI: https://doi.org/10.2478/v10119-012-0022-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in