Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biodiversity Research and Conservation

The Journal of Adam Mickiewicz University

4 Issues per year

Open Access
See all formats and pricing
More options …
Just Accepted


Reclassification of the Angraecum-alliance (Orchidaceae, Vandoideae) based on molecular and morphological data

Dariusz L. Szlachetko
  • Corresponding author
  • Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Tukałło
  • Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Mytnik-Ejsmont
  • Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elżbieta Grochocka
  • Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-26 | DOI: https://doi.org/10.2478/biorc-2013-0004


Results of molecular analysis compared with morphological studies were used for reclassification of the Angraecumalliance (Orchidaceae). For the purpose of this study we sequenced the ITS region (ITS1-5.8S-ITS2) of nrDNA representing nuclear genome and the plastid region trnL-F (including intron of trnL gene and trnL-trnF intergenic spacer). The ITS matrix includes 97 samples representing 86 species and the trnL-F matrix includes 94 samples representing 86 species. We focus mainly on the genus Angraecum, however the other genera of Angraecinae are also included (Aeranthes, Campylocentrum, Dendrophylax, Cryptopus, Calyptrochilum, Lemurorchis, Jumellea, Neobathiea, Oeonia, Oeoniella, Sobennikoffia). Additional 43 sequences, including an outgroup (Polystachya modesta) and other representatives of the subtribes Aeridinae (Aerides) and Aerangidinae (Aerangis, Angraecopsis, Erasanthe, Solenangis), were obtained from NCBI resources. Bayesian analysis using MrBayes 3.1.2 on the combined ITS/trnL-F matrix were performed. The monophyly of Angraecinae with an inclusion of Aerangidinae is highly supported by both methods (93 BP/100 PP). The Angraecoid taxa formed two well supported clades, namely clade I (89 BP/100 PP) and clade II (84 BP/100 PP). New classification based on both molecular and classical taxonomy studies is presented including a key to the genera. The subtribe Angraecinae includes 36 genera, 18 of them, included within Angraecum by different authors so far, are treated here. Five new genera are described: Eichlerangraecum, Hermansia, Lesliegraecum, Pectianriella and Rudolfangraecum. Ten sections of Angraecum are raised to the generic status.

Keywords : Angraecum; ITS; molecular phylogeny; new genus; taxonomy; trnL-F

  • Arends J. C., Van Der Burg W. J. & Van Der Laan F. M. 1980. Notes on African orchids. In J. C. Arends & H. C. D. de Wit (eds.). Liber gratulatorius in honorem H. C. D. de Wit. pp. 449. H. Veenman & Zonen, Wageningen, Netherlands.Google Scholar

  • Arends J. C. & Van Der Laan F. M. 1983. Cytotaxonomy of the monopodial orchids of the African and Malagasy regions. Genetica 62: 81-94.CrossrefGoogle Scholar

  • Bentham G. 1881. Notes on Orchideae. J. Linn. Soc., Bot. 18: 281-360.Google Scholar

  • Cameron K. M. 2001. An expanded phylogenetic analysis of Orchidaceae using three plastid genes: rbcL, atpB, and psaB. Amer. J. Bot. 88: 104.Google Scholar

  • Carlsward B. S., Whitten W. M. & Williams N. H. 2003. Molecular phylogenetics of neotropical leafless Angraecinae (Orchidaceae): reevaluation of generic concepts. Int. J. Pl. Sci. 164: 43-51.Google Scholar

  • Carlsward B. S., Whitten M. W., Williams N. W. & Bytebier B. 2006. Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Amer. J. Bot. 93: 770-786.PubMedGoogle Scholar

  • Chase M. W., Freudenstein J. V., Cameron K. M. & Barrett R. L. 2003. DNA data and Orchidaceae systematics: a new phylogenetic classification. In K. W. Dixon, S.P. Kell, R. L. Barrett & P. J. Cribb (eds.). Orchid conservation, pp. 69-89. Natural History Publications, Kota Kinabalu, Malaysia.Google Scholar

  • Cribb P. J., Hermans J. & Roberts D. L. 2007. Erasanthe (Orchidaceae, Epidendroideae, Vandeae, Aerangidinae), a new endemic orchid genus from Madagascar. Adansonia 29(1): 27-30.Google Scholar

  • Dolphin K., Belshaw R., Orme L. D. C. & Ouicke D. L. J. 2000. Noise and Incongruence: Interpreting results of the Icongruence Length Difference Test. Molec. Phylogen. Evol. 17(3): 401-406.Google Scholar

  • Dressler R. L. 1981. The orchids: natural history and classification, pp. 153-159. Harvard University Press, Cambridge, Massachusetts, USA.Google Scholar

  • Dressler R. L. 1989. The vandoid orchids: a polyphyletic grade? Lindleyana 4: 89-93.Google Scholar

  • Dressler R. L. 1993. Phylogeny and Classification of the Orchid Family, pp. 205-209. Dioscorides Press, Portland.Google Scholar

  • Dressler R. L. & Dodson C. H. 1960. Classification and phylogeny in the Orchidaceae. Ann. Missouri Bot. Gard. 47: 25-68.Google Scholar

  • Farris J. S., Kallersjo M., Kluge A. G. & Bult C. 1994. Testing significance of incongruence. Cladistics 10: 315-319.CrossrefGoogle Scholar

  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.CrossrefGoogle Scholar

  • Fitch W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406-416.CrossrefGoogle Scholar

  • Freudenstein J. V. & Rasmussen F. N. 1999. What does morphology tell us about orchid relationships? A cladistic analysis. Amer. J. Bot. 86: 225-248.PubMedGoogle Scholar

  • Galtier N., Gouy M. & Gautier C. 1996. Sea View and Phylo win, two graphic tools for sequence alignment and molecular phylogeny. CABIOS 12: 543-548.Google Scholar

  • Garay L. A. 1960. On the origin of the Orchidaceae. Bot. Mus. Leafl., Harvard University 19: 57-95.Google Scholar

  • Garay L. A. 1972. On the origin of the Orchidaceae II. Journal of the Arnold Arboretum 53: 202-215.Google Scholar

  • Garay L. A. 1973. Systematics of the genus Angraecum (Orchidaceae). Kew Bull. 28: 495-516.Google Scholar

  • Grant V. 1985. Additional observations on temperate North American hawkmoth flowers. Bot. Gaz. 146: 517-520.CrossrefGoogle Scholar

  • Haber W. A. & Frankie G.W. 1989. A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21: 155-172.CrossrefGoogle Scholar

  • Johnson S. D. & Steiner K. E. 2000. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15: 140-143.Google Scholar

  • Jones K. 1967. The chromosomes of orchids, II. Kew Bull. 21: 151-156.Google Scholar

  • Kelchner S. A. 2000. The evolution of non-coding chloroplast DNA and its apllication in plant systematics. Ann. Missouri Bot. Gard. 87(4): 482-498.Google Scholar

  • Lindley J. 1835. The Genera and Species of Orchidaceous Plants, pp. 553. Ridgways. London.Google Scholar

  • Martins D. J & Johnson S. D. 2007. Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. Amer. J. Bot. 94: 650-659.PubMedGoogle Scholar

  • Micheneau C., Fournel J. & Pailler T. 2006. Bird pollination in an angraecoid orchid on Reunion Island (Mascarene Archipelago, Indian Ocean). Ann. Bot. 97: 965-974.CrossrefGoogle Scholar

  • Micheneau C., Carlsward B. S., Fay M. F., Bytebier B., Pailler T. & Chase M. W. 2008a. Phylogenetics and biogeography of Mascarene angraecoid orchids (Vandeae, Orchidaceae). Mol. Phylogenet. Evol. 46(3): 908-22.PubMedCrossrefGoogle Scholar

  • Micheneau C, Fournel J, Gauvin-Bialecki A. & Pailler T. 2008b. Auto-pollination in a long-spurred endemic orchid (Jumellea stenophylla) on Reunion Island (Mascarene Archipelago, Indian Ocean). Pl. Syst. Evol. 272: 11-22.CrossrefGoogle Scholar

  • Micheneau C., Fournel J., Warren B., Hugel S., Bialecki- Gauvin A., Pailler T., Stasberg D. & Chase M. 2010. Orthoptera, a new order of pollinator. Ann. Bot. 105: 355-364.CrossrefGoogle Scholar

  • Momose K., Yumoto T., Nagamitsu T., Kato M., Nagamasu H., Sakai S., Harrison R. D., Itioka T., Hamid A. A. & Inoue T. 1998. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. 1. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Amer. J. Bot. 85: 1477-1501.Google Scholar

  • Nilsson L. A., Jonsson L., Rason L. & Randrianjohany E. 1985. Monophily and pollination mechanisms in Angraecum arachnites Schltr. (Orchidaceae) in a guild of long-tongued hawk-moths (Sphingidae) in Madagascar. Biol. J. Linn. Soc. 26: 1-19.CrossrefGoogle Scholar

  • Nylander J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar

  • Pfitzer E. H. 1889. Orchidaceae. In: A. Engler & K. Prantl (eds.). Die natürlichen Pflanzenfamilien 3: 52-220. Wilhelm Engelmann Verlag, Leipzig.Google Scholar

  • Reeves G., Chase M. W., Goldblatt P., Rudall P., Fay M. F., Cox A. V., Lejeune B. & Souza-Chies T. 2001. Molecular systematics of Iridaceae: evidence from four plastid regions. Amer. J. Bot. 88: 2074-2087.PubMedGoogle Scholar

  • Ronquist F. & Huelsenbeck J.P. 2003. MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1972-1974.Google Scholar

  • Salamin N., Chase M. W., Hodkinson T. R. & Sav olainen V. 2003. Assessing internal support with large phylogenetic DNA matrices. Mol. Phylogenet. Evol. 27: 528-539.PubMedCrossrefGoogle Scholar

  • Schlechter R. 1918. Versuch einer naturlichen Neuordnung der afrikanischen agraekoiden Orchidaceen. Beih. Bot. Centralbl., Abt. 2. 36: 62-181.Google Scholar

  • Schlechter R. 1925. Orchidaceae Perrierianae. Fedde Rep. Beih. 33: 1-391.Google Scholar

  • Shaw J., Lickey E. B., Schilling E. E. & Small R. L. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer. J. Bot. 94: 275-288.PubMedGoogle Scholar

  • Simmons M. P. & Ochoterena H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49(2): 369-81.PubMedCrossrefGoogle Scholar

  • Stewart J., Hermans J. & Campbell B. 2006. Angraecoid Orchids: Species from the African Region. Timber Press, Portland, Oregon.Google Scholar

  • Summerhayes V. S. 1966. African Orchids: XXX. Kew Bull. 20: 165-199.Google Scholar

  • Sun Y., Skinner D. Z., Liang G. H. & Hulbert S. H. 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89: 26-32.PubMedGoogle Scholar

  • Swofford D. L. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts, USA.Google Scholar

  • Szlachetko D. L. 1995. Systema Orchidalium. Fragm. Florist. Geobot. Suppl. 3: 1-152.Google Scholar

  • Szlachetko D. L. 2003. Genera et species Orchidalium. 7. Vandeae. Ann. Bot. Fennici 40(1): 67-70.Google Scholar

  • Szlachetko D. L. & Romowicz A. 2007. Dolabrifolia, un nouveau genre d’orchidees de l’alliance Angraecum. Richardiana 7(2): 53-54.Google Scholar

  • Taberlet P., Gielly L., Pautou G. & Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109.Google Scholar

  • Van Den Berg C., Goldman D. H., Freudenstein J. V., Pridgeon A. M., Cameron K. M. & Chase M. W. 2005. An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of the Epidendreae and Arethuseae (Orchidaceae). Amer. J. Bot. 92: 613-624.Google Scholar

  • Wendel J. F. & Doyle J. J. 1998. Phylogenetic incongruence: window into genome history and molecular evolution. In: D. E. Solt is, P. S. Solt is & J. J. Doyle (eds.). Molecular systematics of plants II: DNA sequencing, pp. 265-296. Kluwer Academic, Boston, Massachusetts, USA.Google Scholar

  • White T. J., Bruns T., Lee S. & Taylor J. W. 1990. Amplification and direct sequencing of fungal ribosomal DNA genes for phylogenetics. In: M. A. Innis, D. H. Gelgard, J. J. Sninsky & T. J. White (eds.). Protocols: A Guide to Methods and Application, pp. 315-322. New York: Academic Press.Google Scholar

  • Wiens J. J. 1998. Combining data sets with different phylogenetic histories. Syst. Biol. 47: 568-581. CrossrefPubMedGoogle Scholar

About the article

Published Online: 2013-10-26

Published in Print: 2013-03-01

Citation Information: Biodiversity: Research and Conservation, Volume 29, Issue , Pages 1–23, ISSN (Print) 1897-2810, DOI: https://doi.org/10.2478/biorc-2013-0004.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Herinandrianina N. Andriananjamanantsoa, Shannon Engberg, Edward E. Louis, Luc Brouillet, and William Oki Wong
PLOS ONE, 2016, Volume 11, Number 9, Page e0163194
Murielle Simo-Droissart, Bonaventure Sonké, Vincent Droissart, Claire Micheneau, Porter P. Lowry, Olivier J. Hardy, Gregory M. Plunkett, and Tariq Stévart
Plant Systematics and Evolution, 2016, Volume 302, Number 8, Page 1027

Comments (0)

Please log in or register to comment.
Log in