Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biodiversity Research and Conservation

The Journal of Adam Mickiewicz University

4 Issues per year

Open Access
Online
ISSN
1897-2810
See all formats and pricing
More options …
Just Accepted

Issues

Variability of Anthoxanthum species in Poland in relation to geographical-historical and environmental conditions: morphological and anatomical variation

Maria Drapikowska
  • Corresponding author
  • Department of Ecology and Environmental Protection, Poznań University of Life Sciences, Piatkowska 94c, 61-691 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-26 | DOI: https://doi.org/10.2478/biorc-2013-0010

Abstract

Three Anthoxanthum species are found in Poland: the native A. odoratum L. s. str. and A. alpinum Á. Löve & D. Löve, and the alien A. aristatum Boiss. Major problems within this genus concern: (1) population variation of the native A. odoratum, representing various phases of ecological expansion to anthropogenic habitats; (2) population variation of A. odoratum and A. alpinum along the altitudinal transect; and (3) variation between populations of A. aristatum colonizing new areas and habitats outside its natural range of distribution (chorological expansion). In this study, morphological and anatomical variation of the three Polish Anthoxanthum species was analysed in detail. The variation of A. odoratum and A. aristatum was analysed in respect of environmental differences: habitat types and soil parameters. In the Babia Góra massif, variability distribution along the altitudinal transect was analysed for two vicariants: A. odoratum and A. alpinum. A odoratum in this massif does not cross the upper forest limit (i.e. forest line), and lower montane populations are morphologically very similar to lowland populations. Morphological and anatomical differences were detected between populations of A. alpinum along the altitudinal transect in the Babia Góra massif, with distinct upper montane populations. Moreover, clear morphological differences were found between the two altitudinal vicariants. Lowland populations of A. odoratum are characterized by great morphological variation, only weakly correlated with the type of occupied habitat and the phase of ecological expansion. The detected morphological variation reflects only to a limited extent the environmental variation of occupied habitats, and is not significantly correlated with the phase of chorological expansion. Some soil parameters are significantly correlated with some morphological characters studied in all the Anthoxanthum species. The analysed anatomical features of stems and leaves show continuous variation in the three species.

Keywords : Poaceae; Anthoxanthum alpinum; Anthoxanthum aristatum; Anthoxanthum odoratum; distribution; variation; morphology; anatomy; habitat; altitudinal transect; soil parameters; ecological expansion; chorological expansion

  • Adler W., Oswa ld K. & Fisher R. 1994. Excursionflora von Österisch. 1180 pp. Verlag Eugen Ulmer, Stuttgart- Wien.Google Scholar

  • Antonovics J. 1972. Population dynamics of the grass Anthoxanthumodoratum on a zinc mine. J. Ecology. 60: 351-365.CrossrefGoogle Scholar

  • Antonovics J., Clay K. & Schmitt J. 1987. The measurement of small scale environmental heterogeneity using clonal transplants of Anthoxanthum odoratum and Danthonia spicata. Oecologia. 71:601-607Google Scholar

  • Barker B., Barker R., Jessop J. & Vonow H. 2005. Census of South Australian Vascular Plants. Fifth Edition. The Botanic Gardens of Adelaide and State Herbarium, Government of South Australia, Adelaide, South Australia Google Scholar

  • Blossey B. & Notzold R. 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology 83: 887-889.CrossrefGoogle Scholar

  • Bogenrieder A., Bühler M. & Härringer P. 1993. Anthoxanthumodoratum L. und Anthoxanthum alpinum (A. and D. Löve) am Feldberg (Schwarzwald). Ein Beispiel für Höhenvicarianz. Carolinea 51: 41-50.Google Scholar

  • Bolaric S., Barth S., Melchinger A. E. & Posselt U. K. 2005. Molecular genetic diversity within and among German ecotypes in comparison to European perennial ryegrass cultivars. Plant Breeding 124(3): 257-262.CrossrefGoogle Scholar

  • Borowiak K., Jusik S. & Zbierska J. 2011. Canonical Correspondence Analysis (CCA) as a tool for the interpretation of bioindication plants response to ambient air pollution. Fresenius Environmental Bulletin 20(9): 2264-2270.Google Scholar

  • Borrill M. 1963. Experimental studies of evolution in Anthoxanthum (Gramineae). Genetica 34: 183-210.Google Scholar

  • Bostock P. D. & Holland A. E. 2007. Census of the Queensland Flora 2007. Queensland Herbarium, Environmental Protection Agency (EPA), Brisbane, Queensland.Google Scholar

  • Braun-Blanquet J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Ed. 3. 866 pp. Springer-Verlag, Wien-New York.Google Scholar

  • Bretangolle F. 2001. Pollen production and spontaneous polyploidization in diploid populations of Anthoxanthumalpinum. Biol. J. Linn. Soc. 72: 241-247.Google Scholar

  • Brewbaker J. L., Nagai C. & Liu E. H. 1985. Genetic polymorphisms of 13 maize peroxidases. J. Heredity 76: 159-167.Google Scholar

  • Ciosek T. M. & Skrzyczyńska J. 1997. Anthoxanthum aristatum (Poaceae) in the Nizina Południowopodlaska and its neighbourhood (Poland). Fragm. Flor. Geobot. 42(2): 344-348.Google Scholar

  • Clayton S. D. & Renvoize S. A. 1986. Genera graminum. Grasses of the world. 389 pp. Her Majesty’s Stationery Office, London.Google Scholar

  • Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. 596 pp. Lawrence Erlbaum Associates.Google Scholar

  • Csurhes S. & Edwa rds R. 1998. Potential environmental weeds in Australia: Candidate species for preventative control. 208 pp. Canberra, Australia. Biodiversity Group, Environment Australia.Google Scholar

  • Crick J. C. & Grime J. P. 2006. Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology. Physiologist 107: 403-414. DOI 10.1111/j.1469-8137.1987.tb00192.x CrossrefGoogle Scholar

  • Davies M. S. 1975. Physioogical differences among populations of Anthoxanthum odoratum L. collected from the park grass experiment, Rothamsted. Journal of Applied Ecology 3: 953-978.CrossrefGoogle Scholar

  • Djebaili S. 1990. Syntaxonomie des groupements prèforetsiers et steppiques de Algérie aride, Ecologia Mediterranea 16: 231-244.Google Scholar

  • Dostál J. 1989. Nová kvĕtena ČSSR. 1548+viii pp. Academia, Praha.Google Scholar

  • Drapikowska M. 2013. Variability of Anthoxanthum species in Poland in relation to geographical-historical and environmental conditions: isozyme variation. Biodiv. Res. Conserv. 30: 63-93.Google Scholar

  • Drapikowska M., Celka Z., Buczkowska K., Bączkiewicz A. & Zbierska J. 2007a. Zmienność morfologiczna Calamagrostis epigejos (Poaceae) na tle zróżnicowanych warunków siedliskowych. In: L. Frey (ed.). Biologia traw. Fragm. Flor. Geobot. Polonica Suppl. 9: 23-30.Google Scholar

  • Drapikowska M., Celka Z., Buczkowska K. & Kaszkowiak E. 2007b. Morphological variation of the rough smallreed (Calamagrostis arundinacea L., Poaceae) populations from northern and central Poland. Rocz. AR Pozn. 386, Bot.-Stec. 11: 107-111.Google Scholar

  • Drapikowska M., Szkudlarz P., Celka Z., Pierścińska J. & Jackowiak B. 2008. Preliminary results of the studies on morphological diversity of the lowland populations of species from the genus Anthoxanthum L. In: P. Kočárek, V. Plášek, K. Malachová & Š. Cimalová (eds.). Environmental changes and biological assessment. IV. Scripta Facultatis Rerum Naturalium Universitatis Ostraviensis 186: 236-242.Google Scholar

  • Drapikow ska M., Celka Z., Szku dlarz P. & Jackow iak B. 2011. Zmienność morfologiczna populacji Anthoxanthumodoratum (Poaceae) na siedliskach o zróżnicowanym stopniu antropogenicznego przekształcenia. Fragm. Flor. Geobot. Polonica 18(2): 281-293.Google Scholar

  • Drapikowska M., Celka Z., Szkudlarz P. & Jackowiak B. 2012a. Variability of the alien species Anthoxanthumaristaum Boiss. (Poaceae) in the Wielkopolska Lowland (Western Poland). Ukr. Bot. Journ. 69(3): 385-392.Google Scholar

  • Drapikowska M., Szkudlarz P., Celka Z. & Jackowiak B. 2012b. Morphological variability of the two altitude vicariants, Anthoxanthum odoratum L. s.s. and A. alpinum in the Babia Góra Massif (Western CarpathianMountains - Żywiec Beskid, Poland). Acta Bot. Gallica. 159(4): 433-442. doi.org/10.1080/1253807. 2012.747352CrossrefGoogle Scholar

  • Drapikowska M. & Krzakowa M. 2009. Morphological an biochemical variation among common reed (Phragmitesaustralis) populations in northwest Poland. Oceanological and Hydrobiological Studies 38(2): 29-38.Google Scholar

  • Drapikowska M., Leśniewska K., Hasterok R., Szkudlarz P., Celka Z. & Jackow iak B. 2013. Variability of stomata and 45S and 5S rDNAs loci characteristics in two species of Anthoxanthum genus: A. aristatum and A. odoratum (Poaceae). Acta Biologica Hungarica 64(3).Google Scholar

  • Dwire K. A. 1983. Dispersal and colonization of the invading perennial grass, Anthoxanthum odoratum, in annual patches in a California coastal grassland. MS thesis. Univ. of California, Davis.Google Scholar

  • Falkowski M. (ed.). 1982. Trawy polskie. 565 pp. PWRiL, Warszawa.Google Scholar

  • Felber F. 1986. Distribution des cytodeme d’Anthoxanthumodoratum L. s. lat. en Suisse. Les relations Alps-Jura. Bot Helv. 96 145-158.Google Scholar

  • Felber F. 1988. Distribution des cytodemes d’Anthoxanthumodoratum L. s. lat. en France et dans les regions limitrophes. Bulletin de Societe Botanique Francaise. 135. Lettres Botanique 131: 281-293Google Scholar

  • Felber F. 1993. Présence de trois taxons pérennes d’Anthoxanthumodoratum L. en Corse. Candollea 48: 582-591.Google Scholar

  • Felber F. 1996. Evaluation de la stabilité d’une zone de contact entre Anthoxanthum alpinum A. & D. Löve. Actes du Congrés International d’Ecologie et de Biogeographie Alpines. La Thuile.Google Scholar

  • Felber-Girard M., Felber F. & Buttler A. 1996. Habitat differentiation in narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol. 133: 531-540Google Scholar

  • Fernández-Moya J., San Miguel-Ayanz A., Cañellas I. & Gea-Izquierdo G. 2010. Variability in Mediterranean annual grassland diversity driven by small-scale changes in fertility and radiation. Plant Ecol 212(5): 865-877. DOI 10.1007/s11258-010-9869-8.CrossrefGoogle Scholar

  • Filipová L. & Krahulec F. 2006. The transition zone betweenAnthoxanthumalpinum and A. odoratum in the Karkonoše Mts. Preslia 78: 317-330.Google Scholar

  • Flegrová M. & Krahulec F. 1999. Anthoxanthum odoratum and A. alpinum: Life history parameters at two differentaltitudes. Folia Geobotanica 34(1): 19-31.CrossrefGoogle Scholar

  • Fowler N. 1982. Competition and coexistence in a North Carolina Grassland. III. Mixtures of component species. J. Ecology 70: 77-92.CrossrefGoogle Scholar

  • Frei E., Bodin J. & Gian-Reto W. 2010. Plant species’ range shifts in mountainous areas - all uphill from here? Bot. Helv. 120: 117-128.Google Scholar

  • Freeland J. R., Biss P., Conrad K. F. & Silvertown J. 2010. Selection pressures have coused genome-wide population differentiation of Anthoxanthum odoratum despite the potential for high gene flow. J. Evol. Biol. 23(4): 776-782. DOI 10.1111/j.1420-9101.210.01947.xCrossrefGoogle Scholar

  • Frey L. 2007. Taksonomia traw. In: L. Frey (ed.). Księga Polskich Traw, pp. 39-76. Instytut Botaniki im. W. Szafera, PAN, Kraków.Google Scholar

  • Frey L. & Paszko B. 1999. Remarks on the distribution, taxonomy and karyology of Calamagrostis species (Poaceae) with special reference to their representatives in Poland. Fragm. Flor. Geobot. Polonica Suppl. 7: 33-45.Google Scholar

  • Gifford A. L. S., Ferdy J. B. & Molofsky J. 2002. Genetic composition and morphological variation among populations of the invasive grass, Phalaris arundinacea. Can. J. Bot. 80: 779-785.Google Scholar

  • Gluch J. & Rostański A. 1994. Rozmieszczenie gatunków z rodzaju Anthoxanthum L. na terenie województw katowickiego i bielskiego. Acta Biol. Siles. 25(42): 65-80.Google Scholar

  • Grant M. & Antonovics J. 1978. Biology of Ecologically Marginal Populations of Anthoxanthum odoratum L. Phenetics and Dynamics. Evolution 32(4): 822-838.CrossrefGoogle Scholar

  • Grüsewell S., Koerselman W. 2002. Variation in nitrogen and phosphorus concentration of wetland plants. Perpectives in ecology, evolution and systematics 5: 37-61.Google Scholar

  • Gui-Fang Z., Felber F. & Kuepfer P. 2000. Gene frequency distributions of Anthoxanthum alpinum along the altitudinal gradients in Swiss Alps. Chinese Biodiversity 8(1): 95-102.Google Scholar

  • Hedberg I. 1986: The genesis of tetraploid Anthoxanthumodoratum. Acta Univ. Ups., Symb. Bot. Ups. 27(2) 147-154.Google Scholar

  • Hegi G. 1909. Anthoxanthum L. Ruchgras. In: Illustrierte von Mittel-Europa, I, pp. 276-279. Carl Hanser Verlag, München.Google Scholar

  • Hensen C., Kilian V., Wagner W., Durka J., Pusch K. & Wesche K. 2010. Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. in Central Europe. Plant Biology 12: 526-536.CrossrefGoogle Scholar

  • Hewitt G. M. 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87-112.Google Scholar

  • Hewitt G. M. 2001. Speciation, hybrid zones and phylogeography or seeing genes in space and time. Molecular Ecology 10: 537-549.PubMedGoogle Scholar

  • Hewitt G. M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 359: 183-195.CrossrefGoogle Scholar

  • Honnay O. & Jacquemyn H. 2007. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conservation Biology 21: 823-831CrossrefGoogle Scholar

  • Häfliger E. & Scholz H. 1981: Grass weeds 2. xx+137+23 pp. Basel. Google Scholar

  • http://build.e-monocot.org Google Scholar

  • Hultén E. & Fries M. 1986. Atlas of North European Vascular Plants. North of the Tropic of Cancer. I. Introduction, taxonomic index to the maps 1-996. Maps 1-996. xvi+498 pp. Koeltz Scientific Books, Königstein.Google Scholar

  • Jackowiak B. 1999. Modele roślin synantropijnych i transgenicznych. Phytocoenosis 11(N.S.), Seminarium Geobot. 6: 3-16.Google Scholar

  • Jacobs S. W. L. & Hastings S. M. 2007. Anthoxanthum odoratum L. New South Wales Flora Online. PlantNET - The Plant Information Network System of Botanic Gardens Trust. http://plantnet.rbgsyd.nsw.gov.au.Royal Botanic Gardens and Domain Trust, Sydney, New South Wales.Google Scholar

  • Jesson L., Kelly D. & Sparrow A. 2000. The importance of dispersal, disturbance, and competition for exotic plant invasions in Arthurs’s Pass National Park, New Zealand. New Zealand Journal of Botany. 38: 451-468.CrossrefGoogle Scholar

  • Jones K. 1964. Chromosomes and the nature and origin of Anthoxanthumodoratum L. Chromosoma 15: 248-274.CrossrefGoogle Scholar

  • Kapeluszny J. & Haliniarz M. 2010. Ekspansywne i zagrożone gatunki flory segetalnej w środkowowschodniej Polsce. Annales Universitas Mariae-Curie Skłodowska Lublin Polonia. 65(1): 26-33.Google Scholar

  • Kästner A., JÄger E. J. & Schubert R. S. 2001. Handbuch der Segetalpflanzen Mitteleuropas. 609 pp. Springer Verlag, Wien, New York.Google Scholar

  • Klinggräff C. J. v. 1866. Die Vegetationsverhältnisse der Provinz Preussen und Verzeichniss der in derselben bisher gefundenen Phanerogamen. Zweiter Nachtrag zur Flora der Provinz Preussen. 172 pp. Marienwerder.Google Scholar

  • Kmieć K. 2007. Znaczenie lecznicze traw (Poaceae). Fragm. Flor. Geobot. Polonica Suppl. 9: 183-195.Google Scholar

  • Knobloch I. W. 1968. A Checklist of crosses in the Grammineae. Publ. by Dept. of Botany and Plant Pathology Michigan State University, E. Lansing, USA.Google Scholar

  • Korniak T. 1992. Ekspansywne gatunki chwastów segetalnych w północno-wschodniej części Polski. Zesz. Nauk. AR w Krakowie 261(33): 27-36.Google Scholar

  • Korniak T. & Urbisz A. 2007. Trawy synatropijne. In: L. Frey (ed). Księga polskich traw, pp, 317-342. Instytut Botaniki im. W. Szafera, PAN, Kraków.Google Scholar

  • Kreivi M., Rau tiainen P., Aspi J. & Hyvärinen M. 2005. Genetic structure and gene flow in an endangered perennial grass, Arctophila fulva var. pendulina. Conserv. Gen. 6: 683-696.Google Scholar

  • Krzakowa M. & Celka Z. 2007. Intrapopulation variation of Calamagrostis arundinacea (L.) Roth revealed by electrophoretically detected ten enzyme systems. Biodiv. Res. Conserv. 5-8: 5-9.Google Scholar

  • Krzakowa M. & Celka Z. 2008. Intraspecific differentiation of Reed Grass Calamagrostis arundinacea (Poaceae) populations revealed by peroxidase allozymes Acta Soc. Bot. Pol. 77(4): 299-304.Google Scholar

  • Krzakowa M., Celka Z. & Drapikowska M. 2005. Genetic variability in Calamagrostis arundinacea L. (Roth.) populations growing in Calamagrostio arundinaceae-Quercetum petraeae community. In: L. Frey (ed.). Biology of grasses, pp. 23-30. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar

  • Krzakowa M. & Dunajski A. 2007. Genetic differences and hybridization between Calamagrostis arundinacea and C. villosa (Poaceae) in the anemo-orographic (AO) system in the Karkonosze Mountains. Biochemical Systematics and Ecology 35: 23-28.CrossrefGoogle Scholar

  • Kubešová M., Moravc ová L., Duda J., Jarošik W. & Pyšek P. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81-96.Google Scholar

  • Latowski K. 2005. Ecological-biological reasons and sources of the invasive propensity of Anthoxanthum aristatum Boiss. Thaiszia - J. Bot. Košice, 15, Suppl. 1: 143-152.Google Scholar

  • Latowski K., Chmiel J., Jackowiak B. & Żukowski W. 2010. Udział antropofitów we florze segetalnej Wielkopolski. Fragm. Agron. 27(3): 103-111.Google Scholar

  • Lavergne S. & Molofsky J. 2007. Increased genetic variation and evolutionary potential drive the success of invasive grass. PNAS 104(10): 3883-3888.CrossrefGoogle Scholar

  • Linnaeus C. 1754. Genera plantarum. Salvius, Stockholm. Google Scholar

  • Löve A. & Löve D. 1948. Chromosome numbers of northern plant species. University Institute of Applied Sciences, Department of Agriculture Reports Ser. B 3: 1-131. Reykjavik Google Scholar

  • Ławniczak A. E., Güsewell S. & Verhoeven J. T. A. 2009. Effect of N:K supply ratios on the performance of three grass species from herbaceous wetlands. Basic and Applied Ecology 10(8):715-725.CrossrefGoogle Scholar

  • Ławniczak, Drapikowska M., Celka Z., Szkudlarz P. & Jackow iak B. 2011. Response of Anthoxanthum odoratum and A. aristatum to different habitat types and nutrient concentration in soil. Fresenius Environmental Bulletin 20(9a): 2465- 2474.Google Scholar

  • Mabberley D. J. 1997. The Plant-Book. 858 pp. Cambridge University Press, Cambridge.Google Scholar

  • Mack R. N. 2000. Assessing the extent, status, and dynamism of plant invasions: current and emerging approaches. In: H. A. Mooney & R. J. Hobbs (eds.). Invasive species in a changing world, pp. 141-168. Island. Press, Washington, DC.Google Scholar

  • Matuszkiewicz W. 2001. Przewodnik do oznaczania zbiorowisk roślinnych Polski. In: J. B. Faliński (ed.). Vademecum Geobotanicum, 3, 537 pp. Wyd. Nauk. PWN, Warszawa.Google Scholar

  • Mądalski J. & Serwatka J. 1963. Poa supina Schrad i Anthoxanthum alpinum L. et L. w Karkonoszach. Opolskie Towarzystwo Przyjaciół Nauk, Zeszyty Przyr. 3: 53-58.Google Scholar

  • Meusel H., Jäger E. & Weinert E. 1965. Vergleichende Chorologie der zentraleuropäischen Flora. I. Text 583 pp., Karten 258 pp. Gustav Fischer Verlag, Jena.Google Scholar

  • Mirek Z. & Piękoś-Mirkowa H. 2003. Grasses of mountains of Poland. In: L. Frey (ed.). Problems of grass biology, pp. 95-118. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar

  • Mirek Z. & Piękoś-Mirkowa H. 2005. Grass species occurring in anthropogenic habitats in the Tatra National Park. In: L. Frey (ed.). Biology of grasses, pp. 85-99. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar

  • Mirek Z. & Piękoś-Mirkowa H. 2007. Trawy gór. In: L. Frey (ed.). Księga Polskich Traw, pp. 203-228. Instytut Botaniki im. W. Szafera, PAN, Kraków.Google Scholar

  • Mizianty M. 2006. Variability and structure of natural populations of Hordeum murinum L. based on morphology. Pl. Syst. Evol. 261: 139-150. DOI 10.1007/s00606-006-0437-6CrossrefGoogle Scholar

  • Mizianty M. 2007. Kariologia traw. In: L. Frey (red.). Księga Polskich Traw, pp. 77-107. Instytut Botaniki im. W. Szafera, PAN, Kraków.Google Scholar

  • Mizianty M., Frey L., Bieniek W., Boroń P. & Szklarczyk M. 2007. Variability and structure of natural populations of Hordelymus europaeus (L.) Jess. ex Harz and Leymus arenarius (L.) Hochst. as revealed by morphology and DNA markers. Pl. Syst. Evol. 269: 15-28.Google Scholar

  • Niemann P. & Zwerger P. 2006. Population dynamics and competition of annual vernalgrass Anthoxanthum puelii Lecoq et Lamotte. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 58(9): 225-227Google Scholar

  • Oja T. & Jaa ska V. 1998. Allozyme diversity and phylogenic relationships among diploid annual bromus (Bromus Poaceae). Ann. Bot. Fennici. 35: 123-130.Google Scholar

  • Ostrowska A., Gawliński S. & Szczubiałka Z. 1991. Metody analiz i oceny właściwości gleb i roślin-katalog. 334 pp. Wydawnictwo IOŚ Warszawa.Google Scholar

  • Paczos-Grzęda E., Kruk K. & Okoń S. 2009. Ocena wewnątrzgatunkowego podobieństwa genetycznego Avena fatua L. w oparciu o polimorfizm DNA. Biul. Inst. Hod. Rośl. 253: 235-243Google Scholar

  • Paszko B. & Kraw czyk J. 2005. Culm structure of selected Calamagrostis species. In: L. Frey (ed.). Biology of grasses, pp. 235-244. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar

  • Pimentel M., Catalan P. & Sahuquillo E. 2010. Morphological and molecular taxonomy of the annual diploids Anthoxanthum aristatum and A. ovatum (Poaceae) in the Iberian Peninsula. Evidence of introgression in natural populations. J. Linn. Soc. Bot. 164: 53-71.Google Scholar

  • Pimentel M. & Sahuquillo E. 2003. Study of the leaf anatomy of the Iberian species of genius Anthoxanthum (Poaceae). Bocconea 16(2): 683-689.Google Scholar

  • Pimentel M. & Sahuquillo E. 2007. Infraspecific variation and phylogeography of the high-polyploid Iberian endemic Anthoxanthum amarum Brot. (Poaceae; Pooideae) assessed by random amplified polymorphic DNA markers (RAPDs) and morphology. J. Linn. Soc. Bot. 155: 179-192.Google Scholar

  • Pimentel M. & Sahuquillo E. 2008. Relationships between the close congeners Anthoxanthum odoratum and A.alpinum (Poaceae, Pooideae) assessed by morphological and molecular methods. J. Linn. Soc. Bot. 156: 237-252.Google Scholar

  • Pimentel Pereira M., Estevez Perez G. & Sahuquillo Balbuena E. 2007a. European Sweet Vernal Grasses (Anthoxanthum: Poaceae, Pooideae, Aveneae): A Morphometric Taxonomical Approach. Systematic Botany 32(1): 43-59.CrossrefGoogle Scholar

  • Pimentel M., Sahuquillo E. & Catalan P. 2007b. Genetic diversity and spatial correlation patterns unravel the biogeographical history of the European sweet grasses (Anthoxanthum L., Poaceae). Molecular Phylogenetics and Evolution 44: 667-684.CrossrefGoogle Scholar

  • Pimentel M., Perille D. Romero & Sahuquillo E. 2006. Taxonomical relationships between Anthoxanthum aristatum and A. ovatum (Poaceae: Pooideae) assessed by Numerical Taxonomy Methods. Bocconea 19: 55-64.Google Scholar

  • Pinto da Silva A. R., Teles A. N., Ramos Lopez M. H., Rainha B. V. & Martins J. 1971. Treze espécies e subspécies novas para a flora de Portugal. Agronomia Lusitana 33(1): 1-24.Google Scholar

  • Platenkamp G. A. J. 1991. Phenotypic plasticity and population differentiation in seeds and seedlings of the grass Anthoxanthum odoratum. Oecologia 88: 515-520.Google Scholar

  • Remison S. U. & Snaydon R. W. 1978. Yield, seasonal changes in root competitive ability and competition for nutrients among grass species. J. Agricultural Science,Cambridge 90: 115-124.Google Scholar

  • Roem W. J. & Berendse F. 2000. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biological Conservation 92: 151-161.CrossrefGoogle Scholar

  • Rola Z. & Kuźniewski E. 1979. Einfluß der Intensivierung und Spezialisierung der Pflanzenproduktion auf die Verunkrautung. In: Unkrautbekämpfung in der industrimäßigen Pflanzenproduktion. 1: Allgemeine Grundlagen. Wiss. Beitr. Martin-Luther-Univ. Halle- Wittenberg 7 (S 16). S. 22-27. Halle (Saale).Google Scholar

  • Rostański K. 1977. Flora i roślinność synantropijna w Karkonoskim Parku Narodowym. Prace Karkonoskiego Towarzystwa Naukowego w Jeleniej Górze 9: 49-77.Google Scholar

  • Rostański A. 1996. Vernal-grasses (Anthoxanthum, Poaceae) in Poland. Fragm. Flor. Geobot. 41(2): 513-520.Google Scholar

  • Rostański A. & Woźniak G. 2007. Trawy (Poaceae) występujące spontanicznie na terenie nieużytków poprzemysłowych. Fragm. Flor. Geobot. Polonica Suppl. 9: 31-42.Google Scholar

  • Rothmaler W., Jäger E. J. & Werner K. 2005. Exkursionsflora von Deutschland. Band 4, Gefäßpflanzen: Kritischer Band. 980 pp. Spektrum Akademischer Verlag, Elsevier Gmbh, München.Google Scholar

  • Rozmus M. 1958. Cytological investigations of Anthoxanthumalpinum L. et L. a new species of the flora in Poland. Acta Biol. Cracov. ser. Bot. 1: 171-184.Google Scholar

  • Rozmus M. 1960. The taxonomical rank of Anthoxanthumalpinum L. et L. Acta Biol. Cracov. Ser. Bot. 3: 81-90.Google Scholar

  • Rozmus M. 1963. Cytological studies in biotypes of Anthoxanthumalpinum with accessory chromosomes. Acta Biol. Cracov. Ser. Bot. 6: 115-141.Google Scholar

  • Rutkowski L. 2011. Klucz do oznaczania roślin naczyniowych Polski niżowej. Wyd. II, popr. i unowocześnione, 814 pp. Wyd. Nauk. PWN, Warszawa.Google Scholar

  • Ryves T. B., Clement E. J. & Foster M. C. 1996. Alien Grasses of the British Isles. 181 pp. Botanical Society of the British Isles City. London.Google Scholar

  • Schneider Ch., Sukopp U. & Sukopp H. 1994. Biologischökologische Grundlagen des Schutzes gefährdeter Segetalpflanzen. Schr. f. Vegetation. 26: 1-356.Google Scholar

  • Schönswetter P., Stehlik I., Holderegger R. & Tribsch A. 2005. Molecular evidence for glacial refungia of mountain plants in the European Alps. Molecular Ecology 14(11): 3347-3555. DOI 10.1111/j.1365-294X.2005.02683.x \CrossrefGoogle Scholar

  • Silvertown J., Poulton P., Johnson E., Grand E., Heard M. & Biss P. M. 2006. The park grass experiment 1856-2006: its contribution to ecology. Journal of Ecology 94: 801-814.CrossrefGoogle Scholar

  • Skrajna T. & Skrzypc zyńska J. 2007. Wybrane cechy biologiczne i występowanie A. aristatum Boiss. Na Wysoczyźnie Kałuszyńskiej. Annales Univeritatis Mariae Curie-Skłodowska Lublin-Polonia. 62(2):145-155.Google Scholar

  • Skrzypczyńska J., Skraj na T. & Rzymow ska Z. 2010.Google Scholar

  • Ekspansja Anthoxanthum aristatum Boiss. w uprawach rolniczych na Nizinie Południowopodlaskiej. Fragm. Agron. 27(2): 135-144.Google Scholar

  • Snaydon R. W. & Bradshaw A. D. 1969 Differences betweennatural populations of Trifolium repens L. in response to mineral nutrients. II. Calcium, magnesium and potassium. Journal of Applied Ecology 6: 185-202.CrossrefGoogle Scholar

  • Snaydon R. W. & Davies M. S. 1972. Rapid population differentiation in a mosaic environment. II. Morphological variation in Anthoxanthum odoratum. Evolution 26: 390-405.CrossrefGoogle Scholar

  • Snaydon R. W. & Davies M. S. 1976. Rapid population differentiation in a mosaic environment. Populations of Anthoxanthum odoratum at sharp boundaries. Heredity 37: 9-25.CrossrefGoogle Scholar

  • Sneath P. H. A. & Sokal R. R. 1973. Numerical Taxonomy. 573 pp. Freeman, San Francisco.Google Scholar

  • Soukupová L., Frantík T. & Jeník J. 2001. Grasslands versus Krummeholz in arctic-alpine tundra of the Giant Mountains. Opera Corcontica 38: 67-76.Google Scholar

  • Stachurska-Swakoń A., Kuź K. 2011. Phenotypic response of Doronicum austriacum Jacq. (Asteraceae) to diverse mountain and lowland conditions. Polish Journal of Ecology 59(2): 249-262.Google Scholar

  • Stančić Z. 2005. Anthoxanthum alpinum (Poaceae-Aveneae) in the Mountains from Croatia to Macedonia. Nat. Croat. 14(2): 87-9. Stat Soft, Inc. 2011. StatSoft. WEB: http://www.statsoft.com/textbook/.Google Scholar

  • Stöcklin J., Kuss P. & Pluess A. R. 2009. Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot. Helv. 119: 125-133.Google Scholar

  • Sutkowska A. & Pasierbiński A. Pochodzenie spontanicznie rozprzestrzeniającego się gatunku Bromus carinatus (Poaceae) na siedliskach ruderalnych i segetalnych w Polsce. 2009. Fragm. Flor. Geobot. Polonica 16(2): 281-295.Google Scholar

  • Szczepaniak M. 2002. Morphological variability of Polish populations of Elymus repens from various habitat - preliminary report. Ecological Questions 2: 159-168.Google Scholar

  • Szczepaniak M. 2009. Biosystematic studies of Elymus repens L. Gould (Poaceae) patterns of phenotypic variation. Acta Soc. Bot. Pol. 78(1): 51-61.Google Scholar

  • Szeląg Z. 2000. Rośliny naczyniowe Masywu Śnieżnika i Gór Bialskich. Fragm. Flor. Geobot. Polonica, Suppl. 3: 1-255.Google Scholar

  • Szwed W. 1986. Ecological scale of chosen vascular plants of the subalpine and alpine zones in Babia Góra Massif. PTPN, Wydz. Matem.-Przyr. Prace Kom. Biol. 69: 1-91. PWN Warszawa-Poznań.Google Scholar

  • Śliwińska E. 2008. Zastosowanie cystometrii przepływowej do oznaczania DNA u roślin. Postępy Biologii Komórki 35(24): 165-176).Google Scholar

  • Teppner H. 1969. Anthoxanthum alpinum und seine Verbreitung in der Steiermark. Phyton (Horn) 13: 305-312.Google Scholar

  • Teppner H. 1970. Karyotypen europäischer, perennierender Sippen der Gramineen-Gattung Anthoxanthum. Österreichische Botanische Zeitschrift. 11: 280-292.Google Scholar

  • Ter Braak C. J. F. 1986. Canonical Correspondence Analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5): 1167-1179.CrossrefGoogle Scholar

  • Thompson J. D. & Lumaret R. 1992. The evolutionary dynamics of polyploidy plants: origin, establishment and persistence. Trends in Ecology and Evolution 7: 302-7.Google Scholar

  • Thompson L. M. & Troeh F. R. 1978. Soils and Soils fertility. 516 pp. McGraw-Hill, New York.Google Scholar

  • Tokarska-Guzik B. 2005. The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland. Prace naukowe Uniw. Śląskiego w Katowicach 2372: 1-192.Google Scholar

  • Tokarska-Guzik B., Urbisz Al., Urbisz An., Węgrzynek B., Nowak T. & Pasierbiński A. 2007. Regional scale assessment of alien plant invasions: a case study for the Silesian Upland (southern Poland). In: B.Google Scholar

  • Tokarska-Guzik, J. H. Brock, G. Brundu, L. Child, C. C. Daehler & P. Pyšek (eds.). Plant Invasions: Human perception, ecological impacts and management, pp. 171-188. Backhuys Publishers, Leiden, The Netherlands.Google Scholar

  • Tokarska-Guzik B., Dajd ok Z., Zając M., Urbisz A. & Danielewicz W. 2011. Identyfikacja i kategoryzacja roślin obcego pochodzenia jako podstawa działań praktycznych. Acta Bot. Siles. 6: 23-53.Google Scholar

  • Tokarska-Guzik B., Dajd ok Z., Zając M., Zając A., Urbisz A., Danielewicz W. & Hołd yński Cz. 2012. Rośliny obcego pochodzenia w Polsce ze szczególnym uwzględnieniem gatunków inwazyjnych. 197 pp. Generalna Dyrekcja Ochrony Środowiska, Warszawa.Google Scholar

  • Tutin T. G. 2005. Anthoxanthum L. In: T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters & D. A. Webb (eds.). Flora Europaea, vol. 5 Alismataceae to Orchidaceae (Monocotyledones), pp. 229-230. Cambridge University Press, Cambridge.Google Scholar

  • Valdés B. 1973. Revisión de las especies anuales del género Anthoxanhum (Gramineae). Lagascalia 3(1): 99-141.Google Scholar

  • Warcholińska A. U. & Siciński J. T. 1996. Ekspansja Anthoxanthumaristatum Boiss. w środkowej Polsce. Zesz. Nauk. AT-R, Bydgoszcz 196: 183-191.Google Scholar

  • Wasylikowa K. 2001. Początki upraw roślin: gdzie, kiedy, jak i dlaczego. Wiad. Bot. 45(1-2): 7-31.Google Scholar

  • Warwick S. I., Thompson L. D. & Black L. D. 1987. Genetic variation in Canadian and European populations of the colonizing weed species Apera spica-venti. New Phytologist 106: 301-317.CrossrefGoogle Scholar

  • Vilhar B., Vidic T., Jogan N. & Dermastia M. 2002. Genome size and the nucleolar number as estimators of ploidy level in Dactylis glomerata in the Slovenian Alps. Pl. Syst. Evol. 234: 1-13. DOI 10.1007/s00606-002-0186-0.CrossrefGoogle Scholar

  • Woziwoda B. 2006. Różnorodność florystyczna różnowiekowych lasów, izolowanych w krajobrazie rolniczym Polski Środkowej, a problem zachowania i ochrony rodzimych gatunków leśnych. In: D. Anderwa ld (ed.). Aktywne metody ochrony przyrody w zrównoważonym leśnictwie. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej 8(11): 103-109.Google Scholar

  • Yamamoto Y. 1995. Allelopathic potential of Anthoxanthumodoratum for invading Zoysia-grassland in Japan. Journal of Chemical Ecology 21(9): 1365-1373.CrossrefGoogle Scholar

  • Zając A. & Zając M. (eds.). 2001. Distribution Atlas of Vascular Plants in Poland. xii+714 pp. Edited by Laboratory of Computer Chorology, Institute of Botany, Jagiellonian University, Cracow.Google Scholar

  • Zając A. & Zając M. 2007. Fitogeografia traw występujących w Polsce. In: L. Frey (ed.). Księga Polskich Traw, pp. 169-188. Instytut Botaniki im. W. Szafera, PAN, Kraków. Google Scholar

About the article

Published Online: 2013-10-26

Published in Print: 2013-06-01


Citation Information: Biodiversity: Research and Conservation, ISSN (Print) 1897-2810, DOI: https://doi.org/10.2478/biorc-2013-0010.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Agnieszka Rewicz, Anna Bomanowska, Joanna Magda, and Tomasz Rewicz
Systematics and Biodiversity, 2017, Volume 15, Number 1, Page 25

Comments (0)

Please log in or register to comment.
Log in