Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Baltic Journal of Real Estate Economics and Construction Management

1 Issue per year

Open Access
See all formats and pricing
In This Section

Solution to Urban Air Pollution – Carbon Free Transport

Jānis Kleperis
  • University of Latvia, Latvia
/ Biruta Sloka
  • Corresponding author
  • University of Latvia, Latvia
  • Email:
/ Justs Dimants
  • University of Latvia, Latvia
/ Ilze Dimanta
  • University of Latvia, Latvia
/ Jānis Kleperis Jr.
  • University of Latvia, Latvia
Published Online: 2016-12-13 | DOI: https://doi.org/10.1515/bjreecm-2016-0003


The analysis of the results of long-term air quality monitoring in Riga is presented, which shows that in city centre throughout the measurement time (2004-2014) according to the guidelines defined by the European Union directives and Latvian laws the limits of small particles PM10 and nitrogen dioxide (NO2) are exceeded. From the nature of appearance of pollution and from the research of morphology and composition of fine dust particles it was concluded that in the city centre where the monitoring was performed the main air pollutants are caused by internal combustion engine vehicles. The measures to reduce air pollution performed by two Action Programs (2004-2009; 2011-2015) of the City Council showed that there were only two possible ways to improve air quality in urban environment ‒ to decrease the number of traffic units and/or to decrease exhaust emissions from vehicles.

From the analysis of energy consumption and resources used for it the conclusion was drawn that Latvia is dependent on fossil fuel import, especially in traffic sector (99 %). A new trend has been observed in Latvia ‒ the type of cars is changing: the number of gasoline cars rapidly decreases and number of diesel cars is growing. Both fuels in exhaust gases of second-hand cars are giving high emissions of fine particles (soot) and nitrogen oxides as compared with new cars; 72 % of cars on the roads of Latvia are more than 13 years old. The switch to bio-diesel can improve Latvian statistics according to CO2 reduction target for 2020 but not the concentration of PM10 and NO2 on streets with dense traffic.

Therefore, to improve air quality in urban environment and simultaneously reduce the dependence of Latvia from fossil fuel import, a scenario is proposed for the changeover to zero-carbon technologies in transport and energy production. Hydrogen is analyzed from the point of view of availability of resources and commercialized technologies. The research of the public opinion was done because there is little awareness in society about hydrogen as energy carrier and simultaneously as fuel.

Keywords: Attitude; hydrogen economy; public opinion; transport emissions; urban air pollution


  • Actiņa, G., Geipele, I., & Zeltins, N. (2015). Planning and Managing Problems of Energy and Energy Efficiency at Regional and District Level in Latvia: Case Study. In 2015 International Conference on Industrial Engineering and Operations Management (IEOM) (pp. 1-7). IEEE.Hyatt Regency Dubai; United Arab Emirates; March 3-5, 2015; Category number CFP1566Z-ART; Code 112072. http://dx.doi.org/10.1109/ieom.2015.7093843 [Crossref]

  • Ādamsone, L., & Parupa, D. (2007). Air Quality Management in Riga. Ekonomika ir vadyba: aktualijos ir perspektyvos, 1(8), 5-9. ISSN 1648-9098.

  • Ahmed, A., Al-Amin, A. Q., Ambrose, A. F., & Saidur, R. (2015). Hydrogen Fuel and Transport System: A Sustainable and Environmental Future. International Journal of Hydrogen Energy, 41(3), 1369-1380. http://dx.doi.org/10.1016/j.ijhydene.2015.11.084 [Crossref]

  • Bahreini, R., Gilman, J. B., Hall, K., Holloway, J. S. S., et al. (2012). Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophysical Research Letters, 39(6). http://dx.doi.org/10.1029/2011GL050718 [Crossref]

  • Ballard in Euro trolley bus deal, launches bus servicing at Van Hool. (2014). Fuel Cells Bulletin, 2014(11), 2-3. http://dx.doi.org/10.1016/S1464-2859(14)70299-8 [Crossref]

  • Consumption of energy resources in Latvia. (2015). The Central Statistical Bureau of Latvia (CSB), Retrieved from http://www.csb.gov.lv/en/dati/statistics-database-30501.html

  • Cruz, I. S., & Katz-Gerro, T. (2015). Urban Public Transport Companies and Strategies to Promote Sustainable Consumption Practice. Journal of Cleaner Production, 1-6.

  • U.S. Department of Energy. (2012). Technical Plan - Education and Outreach. Multi-Year Research, Development and Demonstration Plan. Retrieved from http://energy.gov/sites/prod/files/2014/03/f10/education.pdf

  • Electric mobility in Riga. (n.d.). Riga Energy Agency, Report on SUM project results, 2012. Retrieved from http://www.rea.riga.lv/files/SUM_project_meeting_in_Vigo_October_2012/Riga_practice.pdf

  • Elliott, M. A., Nebel, G. J., & Rounds, F. G. (1955). The Composition of Exhaust Gases from Diesel, Gasoline and Propane Powered Motor Coaches. Journal of the Air Pollution Control Association, 5(2), 103-108. http://dx.doi.org/10.1080/00966665.1955.10467686 [Crossref]

  • EU Roadmap for moving to a competitive low carbon economy in 2050 (2011). EUR-Lex: Access to European Union Law. Retrieved from http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52011DC0112

  • Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan. (2015). Retrieved from http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/

  • FuelCellsWorks. (2013). Riga City Council explores deployment of hydrogen applications. FuelCellsWorks. Retrieved from https://fuelcellsworks.com/archives/2013/03/28/riga-city-councilexplores-deployment-of-hydrogen-applications/

  • Geipele, I., Staube, T., Ciemleja, G., Ekmanis, J., & Zeltins, N. (2014). Nanotechnologies in Latvia: Commercialisation Aspect. Latvian Journal of Physics and Technical Sciences, 51(5), 40-55. http://dx.doi.org/10.2478/lpts-2014-0029 [Crossref]

  • Geipele, I., Staube, T., Ciemleja, G., Geipele, S., Zeltins, N., & Ekmanis, J. (2015). The Development and Design of Engineering Economic Indicator System for Nanotechnology Industry Product Manufacturing: A Case Study of Latvia. Latvian Journal of Physics and Technical Sciences, 52(5), 3-19. http://dx.doi.org/10.1515/lpts-2015-0024 [Crossref]

  • Gordon, T. D., Presto, A. A., May, A. A., Nguyen N. T., Lipsky, E. M., Donahue, N. M., Gutierrez, A., Zhang, M., Maddox, C., Rieger, P., Cattopadhyay, S., Maldonado, H., Maricq, M. M., & Robinson, A. L. (2014). Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles. Atmospheric Chemistry and Physics, 14, 4661-4678. http://dx.doi.org/10.5194/acp-14-4661-2014 [Crossref]

  • Hoffmann, P. (2012). Tomorrow’s Energy: Hydrogen, Fuel Cells and the Prospects for a Cleaner Planet. The MIT Press. ISBN 9780262516952, 360 p.

  • Klavs, G., & Kudrenickis, I. (2012). Energy Efficiency Policies and Measures in Latvia. Riga: Institute of Physical Energetics. 91 p.

  • Kleperis, J., Danilane, D., Jandulina, J., & Vitola, E. (2002). Inventory, modelling and monitoring of traffic caused air pollution in Riga. In Proceedings of 11th International Symposium “Transport and Air Pollution” (vol. 2, pp. 259-266). Graz University of Technology, Austria, 19-21 June.

  • Kleperis, J. (2007). The First Riga Action Program for the Improvement of Air Quality: Achievements and Challenges. In Environment And Sustainability Profile For Riga, Riga City Council, Riga Sustainability Management Centre “Agenda 21”, (pp. 13-22), Riga.

  • Kleperis, J., Bajars, G., Bremere, I., Menniks, M., Viksna, A., Osite, A., & Pavlicuks, D. (2011). Air Quality in Riga and Its Improvement Options. Environmental and Climate Technologies, 7(1), 72-78. http://dx.doi.org/10.2478/v10145-011-0030-2 [Crossref]

  • LR Cabinet of Ministers. (2009). Regulations on air quality. Regulation No. 1290, Accepted 03.11.2009. Retrieved September 5, 2016, from http://likumi.lv/doc.php?id=200712

  • Ministry of Economics of the Republic of Latvia. (2011). Latvian Energy in Figures, 40 p. Retrieved from http://www.em.gov.lv/em/2nd/?lng=en&cat=30166

  • McCormick, L. R., Williams, A., Ireland, J., Brimhall, M., & Hayes, R. R. (2006). Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4. Milestone Report NREL/MP-540-40554 October 2006.

  • Ministry of Transport Republic of Latvia. (2010). Riga and Pieriga Mobility Plan final report. Riga. Retrieved from http://www.sam.gov.lv/images/modules/items/PDF/item_3008_LET106-1_050-rapd-_final_report_RPMP.pdf

  • Near Roadway Air Pollution and Health. (n.d.). Retrieved September 5, 2016, from EPA website, https://www3.epa.gov/otaq/nearroadway.htm

  • Reijalt, M. (2010). Hydrogen and fuel cell education in Europe: from when? And where? To here! And now! Journal of Cleaner Production, 18(1), S112-S117. http://dx.doi.org/10.1016/j.jclepro.2010.05.017 [Crossref]

  • Ricci, M., Bellaby, P., Flynn, R. (2010). Engaging the public on paths to sustainable energy: Who has to trust whom? Energy Policy, 38(6), 2633-2640. http://dx.doi.org/10.1016/j.enpol.2009.05.038 [Crossref]

  • Riga City Council City Development Department. (2011). Riga City Air Quality Improvement Action Programme 2011-2015. Retrieved from http://www.rigasprojekti.lv/uploads/GaisaProgr_Brosura_EN.pdf

  • Riga Energy Agency. (2014). Riga Smart City: Sustainable Energy Action Plan 2014-2020. Retrieved from http://www.rea.riga.lv/files/RIGA_SMART_CITY_SEAP_2014-2020_EN.pdf

  • Singh, S., Jain, S., Venkateesteswaran, P. S., Tiwari, A. K., Nouni, M. R., Pandey, J. K., & Goel, S. (2015). Hydrogen: A Sustainable Fuel for Future of the Transport Sector. Renewable and Sustainable Energy Reviews, 51, 623-633. http://dx.doi.org/10.1016/j.rser.2015.06.040 [Crossref]

  • Sloka, B., Kleperis, J., Dimants, J., Dimanta, I., & Kleperis, Jr. J. (2014). Hydrogen as Energy Source - Challenges for Regions in Latvia (Results Of Public Opinion Survey). Management Theory and Studies for Rural Business and Infrastructure Development. 36(1), 147-155. http://dx.doi.org/10.15544/mts.2014.014

  • Statistics of Registered Vehicles in Latvia. (n.d.). Road Traffic Safety Directorate. Retrieved May 23, 2015, from http://www.csdd.lv/eng/about_csdd/

  • Steinberga, I., Bikshe Jr. J., Kundzins, K., Kleperis, J., & Bikshe, J. (2013). Evaluation of Local Scale PM Pollution Levels in Typical Street Canyon in Riga. Journal of Environmental Protection, 4, 956-963. http://dx.doi.org/10.4236/jep.2013.49110 [Crossref]

  • Tarigan, A. K. M., & Bayer, S. B. (2012). Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006-2009. Renewable and Sustainable Energy Reviews, 16(8), 5535-5544. http://dx.doi.org/10.1016/j.rser.2012.05.045 [Crossref]

  • TEN-T Days. (2015). Joint Workshop An Innovation Pipeline for Hydrogen and Fuel Cells. Riga, Latvia, Press Release, June 23, 2015.

  • Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 35(5), 2683-2691. http://dx.doi.org/10.1016/j.enpol.2006.12.001 [Crossref]

  • Zhang, J., McCreanor, J. E., Cullinan, P., Chung, K. F., Ohman-Strickland, P., Han, I. K., Järup, J., & Nieuwenhuijsen, M. J. (2009). Health Effects of Real-World Exposure to Diesel Exhaust in Persons with Asthma. Health Effect Institute: Research report, 138, 144 p.

About the article

Published Online: 2016-12-13

Published in Print: 2016-11-01

Citation Information: Baltic Journal of Real Estate Economics and Construction Management, ISSN (Online) 2255-9671, DOI: https://doi.org/10.1515/bjreecm-2016-0003. Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

Comments (0)

Please log in or register to comment.
Log in