1.
Graham L, Wilcox L. The occurrence and phylogenetic significance of putative placental transfer cells in the green alga Coleochaete. Am J Bot 1983; 70: 113–20.CrossrefGoogle Scholar
2.
Bower FO. The origin of a land flora. London: MacMillan & Co., 1908.Google Scholar
3.
Pires ND, Dolan L. Morphological evolution in land plants: new designs with old genes. Phil Trans R Soc B 2012; 367: 508–18.Google Scholar
4.
Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 1998; 29: 263–92.CrossrefGoogle Scholar
5.
Gerrienne P, Meyer-Berthaud B, Fairon-Demaret M, Streel M, Steemans P. Runcaria, a middle devonian seed plant precursor. Science 2004; 306: 856–8.CrossrefGoogle Scholar
6.
Linkies A, Graeber K, Knight C, Leubner-Metzger G. The evolution of seeds. New Phytol 2010; 186: 817–31.CrossrefGoogle Scholar
7.
Willis KJ, McElwain JC. The evolution of plants. Oxford, UK: Oxford University Press, 2002.Google Scholar
8.
Maheshwari P. An introduction to the embryology of angiosperms. New York: McGraw-Hill, 1950.Google Scholar
9.
Nawaschin SG. Resultate einer Revision der Befruchtungs- vorgänge bei Lilium martagon und Fritillaria tenella. Bull Acad Imp Sci St Petersbg 1898; 9: 377–82.Google Scholar
10.
Guignard L. Sur les anthérozoides et la double copulation sexuelle chez les végétaux angiospermes. Rev Gén Bot 1899; 11: 129–35.Google Scholar
11.
Sargant E. Recent work on the results of fertilization in angiosperms. Ann Bot 1900; 4: 689–712.Google Scholar
12.
Strasburger E. Einige Bemerkungen zur Frage nach der “doppelten Befruchtung” bei den Angiospermen. Bot Zeit 1900; 58: 293–316.Google Scholar
13.
Coulter JM. The endosperm of angiosperms. Bot Gaz 1911; 51: 380–5.CrossrefGoogle Scholar
14.
Friedman WE. The evolution of double fertilization and endosperm: an “historical” perspective. Sex Plant Reprod 1998; 11: 6–16.CrossrefGoogle Scholar
15.
Friedman WE. Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science 1990; 247: 951–4.Google Scholar
16.
Carmichael J, Friedman WE. Double fertilization in Gnetum gnemon (Gnetaceae): its bearing on the evolution of sexual reproduction within the Gnetales and the anthophyte clade. Am J Bot 1996; 83: 767–80.CrossrefGoogle Scholar
17.
Zhong B, Yonezawa T, Zhong Y, Hasegawa M. The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol Biol Evol 2010; 27: 2855–63.CrossrefGoogle Scholar
18.
Geeta R. The origin and maintenance of nuclear endosperms: viewing development through a phylogenetic lens. Proc R Soc London B 2003; 270: 29–35.CrossrefGoogle Scholar
19.
Floyd S, Friedman WE. Evolution of endosperm developmental patterns among basal flowering plants. Int J Plant Sci 2000; 161: S57–81.Google Scholar
20.
Friedman WE. The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm. Am J Bot 1994; 81: 1468–86.CrossrefGoogle Scholar
21.
Friedman WE, Madrid EN, Williams JH. Origin of the fittest and survival of the fittest: relating female gametophyte development to endosperm genetics. Int J Plant Sci 2008; 169: 79–92.Google Scholar
22.
Queller D. Kin selection and conflict in seed maturation. J Theor Biol 1983; 100: 153–72.CrossrefGoogle Scholar
23.
Westoby M, Rice B. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution 1982; 36: 713–24.CrossrefGoogle Scholar
24.
Charnov EL. Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci USA 1979; 76: 2480–4.CrossrefGoogle Scholar
25.
Vázquez-Lobo A. Sexual reproduction in gymnosperms: an overview. In: Gamboa-deBuen A, Orozco-Segovia A, Cruz-Garcia F, editors. Functional diversity of plant reproduction. Kerala, India: Research Signpost, 2009: 1–16.Google Scholar
26.
Friedman WE, Williams J. Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants. Evolution (NY) 2003; 57: 216–30.CrossrefGoogle Scholar
27.
Friedman WE, Williams JH. Developmental evolution of the sexual process in ancient flowering plant lineages. Plant Cell 2004; 16: S119–32.CrossrefGoogle Scholar
28.
Friedman WE, Ryerson KC. Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. Am J Bot 2008; 96: 129–43.Google Scholar
29.
Friedman WE. Hydatellaceae are water lilies with gymnospermous tendencies. Nature 2008; 453: 94–7.Google Scholar
30.
Friedman WE, Bachelier JB, Hormaza JI. Embryology in Trithuria submersa (Hydatellaceae) and relationships between embryo, endosperm, and perisperm in early-diverging flowering plants. Am J Bot 2012; 99: 1083–95.CrossrefGoogle Scholar
31.
Friedman WE, Bachelier JB. Seed development in Trimenia (Trimeniaceae) and its bearing on the evolution of embryo-nourishing strategies in early flowering plant lineages. Am J Bot 2013; 100: 906–15.CrossrefGoogle Scholar
32.
Nishiyama I, Inomata N. Embryological studies on cross-incompatibility between 2x and 4x in Brassica. Jpn J Genet 1966; 41: 27–42.CrossrefGoogle Scholar
33.
Nishiyama I, Yabuno T. Triple fusion of the primary endosperm nucleus as a cause of interspecific cross-incompatibility in Avena. Euphytica 1979; 28: 57–65.CrossrefGoogle Scholar
34.
Johnston S, den Nijs T, Peloquin S, Hanneman Jr R. The significance of genic balance to endosperm development in interspecific crosses. Theor Appl 1980; 57: 5–9.CrossrefGoogle Scholar
35.
Lin BY. Ploidy barrier to endosperm development in maize. Genetics 1984; 107: 103–15.Google Scholar
36.
Scott RJ, Spielman M, Bailey J, Dickinson HG. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 1998; 125: 3329–41.Google Scholar
37.
Stoute AIA, Varenko V, King GGJ, Scott RJ, Kurup S. Parental genome imbalance in Brassica oleracea causes asymmetric triploid block. Plant J 2012; 71: 503–16.Google Scholar
38.
Leblanc O, Pointe C, Hernandez M. Cell cycle progression during endosperm development in Zea mays depends on parental dosage effects. Plant J 2002; 32: 1057–66.CrossrefGoogle Scholar
39.
Haig D, Westoby M. Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications. Philos Trans Biol Sci 1991; 333: 1–13.Google Scholar
40.
Bushell C, Spielman M, Scott RJ. The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell 2003; 15: 1430–42.CrossrefGoogle Scholar
41.
Ishikawa R, Ohnishi T, Kinoshita Y, Eiguchi M, Kurata N, Kinoshita T. Rice interspecies hybrids show precocious or delayed developmental transitions in the endosperm without change to the rate of syncytial nuclear division. Plant J 2011; 65: 798–806.CrossrefGoogle Scholar
42.
Jansky S. Overcoming hybridization barriers in potato. Plant Breed 2006; 125: 1–12.CrossrefGoogle Scholar
43.
Dilkes BP, Comai L. A differential dosage hypothesis for parental effects in seed development. Plant Cell 2004; 16: 3174–80.CrossrefGoogle Scholar
44.
Olsen O-A. Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 2001; 52: 233–67.CrossrefGoogle Scholar
45.
Ingouff M, Haseloff J, Berger F. Polycomb group genes control developmental timing of endosperm. Plant J 2005; 42: 663–74.CrossrefGoogle Scholar
46.
Hehenberger E, Kradolfer D, Köhler C. Endosperm cellularization defines an important developmental transition for embryo development. Development 2012; 139: 2031–9.CrossrefGoogle Scholar
47.
Haig D. Kin conflict in seed development: an interdependent but fractious collective. Annu Rev Cell Dev Biol 2013; 29: 1–23.Google Scholar
48.
House C, Roth C, Hunt J, Kover PX. Paternal effects in Arabidopsis indicate that offspring can influence their own size. Proc R Soc London B 2010; 277: 2885–93.Google Scholar
49.
Kermicle J. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 1970; 66: 69–85.Google Scholar
50.
Raissig MT, Baroux C, Grossniklaus U. Regulation and flexibility of genomic imprinting during seed development. Plant Cell 2011; 23: 16–26.CrossrefGoogle Scholar
51.
Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 2011; 12: 565–75.CrossrefGoogle Scholar
52.
Köhler C, Wolff P, Spillane C. Epigenetic mechanisms underlying genomic imprinting in plants. Annu Rev Plant Biol 2012; 63: 331–52.CrossrefGoogle Scholar
53.
Haig D, Westoby M. Parent specific gene expression and the triploid endosperm. Am Nat 1989; 134: 147–55.CrossrefGoogle Scholar
54.
Jahnke S, Scholten S. Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 2009; 19: 1677–81.CrossrefGoogle Scholar
55.
Raissig MT, Bemer M, Baroux C, Grossniklaus U. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet 2013; 9: e1003862.CrossrefGoogle Scholar
56.
Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, Grob S, Steimer A, Barann M, Klostermeier UC, Leblanc O, Vielle-Calzada J-P, Rosenstiel P, Grimanelli D, Grossniklaus U. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 2011; 145: 707–19.CrossrefGoogle Scholar
57.
Nodine M, Bartel D. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 2012; 482: 94–7.CrossrefGoogle Scholar
58.
Baroux C, Autran D, Raissig MT, Grimanelli D, Grossniklaus U. Parental contributions to the transcriptome of early plant embryos. Curr Opin Genet Dev 2013; 23: 72–4.CrossrefGoogle Scholar
59.
Grimanelli D, Perotti E, Ramirez J, Leblanc O. Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell 2005; 17: 1061–72.CrossrefGoogle Scholar
60.
Vielle-Calzada J-P, Baskar R, Grossniklaus U. Delayed activation of the paternal genome during seed development. Nature 2000; 404: 91–4.Google Scholar
61.
Aufsatz W, Mette M, Matzke A, Matzke M. The role of MET1 in RNA-directed de novo and maintenance methylation of CG dinucleotides. Plant Mol Biol 2004; 54: 793–804.CrossrefGoogle Scholar
62.
Adams S, Vinkenoog R, Spielman M, Dickinson H, Scott RJ. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 2000; 127: 2493–502.Google Scholar
63.
Xiao W, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol 2006; 142: 1160–8.CrossrefGoogle Scholar
64.
FitzGerald J, Luo M, Chaudhury A, Berger F. DNA methylation causes predominant maternal controls of plant embryo growth. PLoS One 2008; 3: e2298.CrossrefGoogle Scholar
65.
Saze H, Mittelsten Scheid O, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 2003; 34: 65–9.CrossrefGoogle Scholar
66.
Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 2002; 110: 33–42.CrossrefGoogle Scholar
67.
Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M, Machlicova A, Slusarz L, Mosiolek M, Park J-S, Park GT, Fischer RL, Tamaru H. Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 2011; 108: 8042–7.CrossrefGoogle Scholar
68.
Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 2008; 148: 1168–81.CrossrefGoogle Scholar
69.
Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F. Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 2008; 6: e194.CrossrefGoogle Scholar
70.
Johnston AJ, Matveeva E, Kirioukhova O, Grossniklaus U, Gruissem W. A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr Biol 2008; 18: 1680–6.CrossrefGoogle Scholar
71.
Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, Lund G. Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell 2004; 16: 510–22.CrossrefGoogle Scholar
72.
Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 2009; 324: 1447–51.CrossrefGoogle Scholar
73.
Hsieh T-F, Ibarra C a, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D. Genome-wide demethylation of Arabidopsis endosperm. Science 2009; 324: 1451–4.CrossrefGoogle Scholar
74.
Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 2004; 303: 521–3.Google Scholar
75.
Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 2006; 124: 495–506.CrossrefGoogle Scholar
76.
Jullien PE, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 2006; 18: 1360–72.CrossrefGoogle Scholar
77.
Gutiérrez-Marcos JF, Costa LM, Dal Prà M, Scholten S, Kranz E, Perez P, Dickinson HG. Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet 2006; 38: 876–8.CrossrefGoogle Scholar
78.
Xiao W, Gehring M, Choi Y, Margossian L, Pu H, Harada JJ, Goldberg RB, Pennell RI, Fischer RL. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 2003; 5: 891–901.CrossrefGoogle Scholar
79.
Köhler C, Weinhofer-Molisch I. Mechanisms and evolution of genomic imprinting in plants. Heredity 2009; 105: 57–63.Google Scholar
80.
Li Y, Sasaki H. Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res 2011; 21: 466–73.CrossrefGoogle Scholar
81.
Hennig L, Derkacheva M. Diversity of polycomb group complexes in plants: same rules, different players? Trends Genet 2009; 25: 414–23.CrossrefGoogle Scholar
82.
Berner M, Grossniklaus U. Dynamic regulation of polycomb group activity during plant development. Curr Opin Plant Biol 2012; 15: 523–9.Google Scholar
83.
Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 1997; 94: 4223–8.CrossrefGoogle Scholar
84.
Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 1998; 280: 446–50.Google Scholar
85.
Luo M, Bilodeau P, Koltunow a, Dennis ES, Peacock WJ, Chaudhury AM. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 1999; 96: 296–301.CrossrefGoogle Scholar
86.
Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz a, Margossian L, Harada JJ, Goldberg RB, Fischer RL. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 1999; 96: 4186–91.CrossrefGoogle Scholar
87.
Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 1999; 11: 407–15.CrossrefGoogle Scholar
88.
Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W. Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J 2003; 22: 4804–14.CrossrefGoogle Scholar
89.
Guitton A-E, Page DR, Chambrier P, Lionnet C, Faure J-E, Grossniklaus U, Berger F. Identification of new members of fertilization independent seed polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 2004; 131: 2971–81.CrossrefGoogle Scholar
90.
Vielle-Calzada J-P, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Gene Dev 1999; 13: 2971–82.CrossrefGoogle Scholar
91.
Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 1999; 11: 1945–52.CrossrefGoogle Scholar
92.
Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 2000; 97: 10637–42.CrossrefGoogle Scholar
93.
Baroux C, Gagliardini V, Page DR, Grossniklaus U. Dynamic regulatory interactions of polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Gene Dev 2006; 20: 1081–6.CrossrefGoogle Scholar
94.
Jullien PE, Katz A, Oliva M, Ohad N, Berger F. Polycomb group complexes self-regulate imprinting of the polycomb group gene MEDEA in Arabidopsis. Curr Biol 2006; 16: 486–92.CrossrefGoogle Scholar
95.
Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 2003; 15: 425–38.CrossrefGoogle Scholar
96.
Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES. Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2009; 2: 711–23.CrossrefGoogle Scholar
97.
Haun WJ, Laoueillé-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, Phillips AR, Kaeppler SM, Springer NM. Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J 2007; 49: 325–37.CrossrefGoogle Scholar
98.
Gleason EJ, Kramer EM. Characterization of aquilegia polycomb repressive complex 2 homologs reveals absence of imprinting. Gene 2012; 507: 54–60.CrossrefGoogle Scholar
99.
Erilova A, Brownfield L, Exner V, Rosa M, Twell D, Mittelsten Scheid O, Hennig L, Köhler C. Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 2009; 5: e1000663.CrossrefGoogle Scholar
100.
Jullien PE, Berger F. Parental genome dosage imbalance deregulates imprinting in Arabidopsis. PLoS Genet 2010; 6: e1000885.CrossrefGoogle Scholar
101.
Tiwari S, Spielman M, Schulz R, Oakey RJ, Kelsey G, Salazar A, Zhang K, Pennell R, Scott RJ. Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC Plant Biol 2010; 10: 72.CrossrefGoogle Scholar
102.
Kradolfer D, Hennig L, Köhler C. Increased maternal genome dosage bypasses the requirement of the FIS polycomb repressive complex 2 in Arabidopsis seed development. PLoS Genet 2013; 9: e1003163.CrossrefGoogle Scholar
103.
Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 2006; 38: 63–7.CrossrefGoogle Scholar
104.
Aw SJ, Hamamura Y, Chen Z, Schnittger A, Berger F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 2010; 2690: 2683–90.Google Scholar
105.
Nowack MK, Shirzadi R, Dissmeyer N, Dolf A, Endl E, Grini PE, Schnittger A. Bypassing genomic imprinting allows seed development. Nature 2007; 447: 312–5.CrossrefGoogle Scholar
106.
Vinkenoog R, Spielman M, Adams S, Fisher RL, Dickinson HG, Scott RJ. Hypomethylation promotes autonomous endosperm development and rescues postfertilization lethality in fie mutants. Plant Cell 2000; 12: 2271–82.CrossrefGoogle Scholar
107.
Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet 2010; 6: 1–14.Google Scholar
108.
Makarevich G, Villar CBR, Erilova A, Köhler C. Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci 2008; 121: 906–12.CrossrefGoogle Scholar
109.
Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T, Kubo M, Hasebe M. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci USA 2009; 106: 16321–6.CrossrefGoogle Scholar
110.
Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N. Regulation of stem cell maintenance by the polycomb protein FIE has been conserved during land plant evolution. Development 2009; 136: 2433–44.CrossrefGoogle Scholar
111.
Bell PR. Apospory and apogamy: implications for understanding the plant life cycle. Int J Plant Sci 1992; 153: S123–136.Google Scholar
112.
Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM. The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 2011; 23: 865–72.CrossrefGoogle Scholar
113.
Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U. The polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Gene Dev 2003; 17: 1540.Google Scholar
114.
Köhler C, Page DR, Gagliardini V, Grossniklaus U. The Arabidopsis thaliana MEDEA polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 2005; 37: 28–30.Google Scholar
115.
Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, Goodrich J, Grossniklaus U, Köhler C. Different polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 2006; 7: 947–52.CrossrefGoogle Scholar
116.
Josefsson C, Dilkes BP, Comai L. Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 2006; 16: 1322–8.CrossrefGoogle Scholar
117.
Kang I-H, Steffen JG, Portereiko MF, Lloyd A, Drews GN. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 2008; 20: 635–47.Google Scholar
118.
Walia H, Josefsson C, Dilkes BP, Kirkbride R, Harada J, Comai L. Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 2009; 19: 1128–32.CrossrefGoogle Scholar
119.
Shirzadi R, Andersen ED, Bjerkan KN, Gloeckle BM, Heese M, Ungru A, Winge P, Koncz C, Aalen RB, Schnittger A, Grini PE. Genome-wide transcript profiling of endosperm without paternal contribution identifies parent-of-origin-dependent regulation of AGAMOUS-LIKE36. PLoS Genet 2011; 7: e1001303.CrossrefGoogle Scholar
120.
Vrana P, Guan X, Ingram R, Tilghman S. Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet 1998; 20: 362–5.Google Scholar
121.
Kradolfer D, Wolff P, Jiang H, Siretskiy A, Köhler C. An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev Cell 2013; 26: 1–11.Google Scholar
122.
Mosher RA, Melnyk CW, Kelly KA, Dunn RM, Studholme DJ, Baulcombe DC. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 2009; 460: 283–6.CrossrefGoogle Scholar
123.
Mosher R a, Melnyk CW. siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 2010; 15: 204–10.CrossrefGoogle Scholar
124.
Bourc’his D, Voinnet O. A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 2010; 330: 617–22.Google Scholar
125.
Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen R a. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 2012; 151: 194–205.Google Scholar
126.
Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ, Kinoshita T, Higashiyama T, Martienssen R a, Berger F. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 2013; 140: 2953–60.CrossrefGoogle Scholar
127.
Slotkin RK, Vaughn M, Borges F, Tanurdzić M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 2009; 136: 461–72.CrossrefGoogle Scholar
128.
Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U. The triploid endosperm genome of Arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 2007; 19: 1782–94.CrossrefGoogle Scholar
129.
Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada J-P, Grossniklaus U, Grimanelli D. Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell 2010; 22: 307–20.CrossrefGoogle Scholar
130.
Martienssen RA. Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. New Phytol 2010; 186: 46–53.CrossrefGoogle Scholar
131.
Lu J, Zhang C, Baulcombe DC, Chen ZJ. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA 2012; 109: 5529–34.CrossrefGoogle Scholar
132.
Mosher RA. Maternal control of Pol IV-dependent siRNAs in Arabidopsis endosperm. New Phytol 2010; 186: 358–64.CrossrefGoogle Scholar
133.
Burkart-Waco D, Ngo K, Dilkes B, Josefsson C, Comai L. Early disruption of maternal-zygotic interaction and activation of defense-like responses in Arabidopsis interspecific crosses. Plant Cell 2013; 25: 2037–55.CrossrefGoogle Scholar
134.
Koornneef M. Mutations affecting the testa colour in Arabidopsis. Arab Info Serv 1990; 27: 1–4.Google Scholar
135.
Leon-Kloosterziel KM, Keijzer CJ, Koornneef M. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 1994; 6: 385–92.CrossrefGoogle Scholar
136.
Ray S, Golden T, Ray A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev Biol 1996; 180: 365–9.CrossrefGoogle Scholar
137.
Debeaujon I, Léon-Kloosterziel KM, Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 2000; 122: 403–14.CrossrefGoogle Scholar
138.
Garcia D, Gerald J, Berger F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 2005; 17: 52–60.CrossrefGoogle Scholar
139.
Dilkes BP, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, Scott RJ, Comai L. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 2008; 6: 2707–20.Google Scholar
140.
Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 2003; 131: 1661–70.CrossrefGoogle Scholar
141.
Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 2005; 102: 17531–6.Google Scholar
142.
Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J 2010; 63: 670–9.CrossrefGoogle Scholar
143.
Li J, Nie X, Tan JLH, Berger F. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc Natl Acad Sci USA 2013; 110: 15479–84.CrossrefGoogle Scholar
144.
Ingouff M, Jullien PE, Berger F. The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 2006; 18: 3491–501.CrossrefGoogle Scholar
145.
Roszak P, Köhler C. Polycomb group proteins are required to couple seed coat initiation to fertilization. Proc Natl Acad Sci USA 2011; 108: 20826–31.CrossrefGoogle Scholar
146.
Brandvain Y, Haig D. Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am Nat 2005; 166: 330–8.CrossrefGoogle Scholar
147.
Spillane C, Schmid KJ, Laoueillé-Duprat S, Pien S, Escobar-Restrepo J-M, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 2007; 448: 349–52.CrossrefGoogle Scholar
148.
Miyake T, Takebayashi N, Wolf DE. Possible diversifying selection in the imprinted gene, MEDEA, in Arabidopsis. Mol Biol Evol 2009; 26: 843–57.CrossrefGoogle Scholar
Comments (0)