Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomolecular Concepts

Editor-in-Chief: Jollès, Pierre / Mansuy, Isabelle

Editorial Board Member: Avila, Jesus / Bonetto, Valentina / Cera, Enrico / Jorgensen, Erik / Jörnvall, Hans / Lagasse, Eric / Norman, Robert / Pinna, Lorenzo / Raghavan, K. Vijay / Venetianer, Pal / Wahli, Walter

6 Issues per year


CiteScore 2016: 2.39

SCImago Journal Rank (SJR) 2016: 0.753
Source Normalized Impact per Paper (SNIP) 2016: 0.567

Online
ISSN
1868-503X
See all formats and pricing
More options …

The emerging role of the first 17 amino acids of huntingtin in Huntington’s disease

James R. Arndt
  • The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University, Morgantown, WV 26506, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maxmore Chaibva
  • The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University, Morgantown, WV 26506, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Justin Legleiter
  • Corresponding author
  • The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University, Morgantown, WV 26506, USA
  • Center for Neuroscience, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University, Morgantown WV, 26506, USA
  • NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown WV, 26506, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-03 | DOI: https://doi.org/10.1515/bmc-2015-0001

Abstract

Huntington’s disease (HD) is caused by a polyglutamine (polyQ) domain that is expanded beyond a critical threshold near the N-terminus of the huntingtin (htt) protein, directly leading to htt aggregation. While full-length htt is a large (on the order of ∼350 kDa) protein, it is proteolyzed into a variety of N-terminal fragments that accumulate in oligomers, fibrils, and larger aggregates. It is clear that polyQ length is a key determinant of htt aggregation and toxicity. However, the flanking sequences around the polyQ domain, such as the first 17 amino acids on the N terminus (Nt17), influence aggregation, aggregate stability, influence other important biochemical properties of the protein and ultimately its role in pathogenesis. Here, we review the impact of Nt17 on htt aggregation mechanisms and kinetics, structural properties of Nt17 in both monomeric and aggregate forms, the potential role of posttranslational modifications (PTMs) that occur in Nt17 in HD, and the function of Nt17 as a membrane targeting domain.

Keywords: amyloid; huntingtin; Huntington’s disease; lipid binding; polyglutamine; posttranslational modifications

References

  • 1.

    The Collaborative Huntington’s Disease Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–83.Google Scholar

  • 2.

    Legleiter J, Mitchell E, Lotz GP, Sapp E, Ng C, DiFiglia M, Thompson LM, Muchowski PJ. Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem 2010; 285: 14777–90.Google Scholar

  • 3.

    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP. Neuropathologoical classification of Huntingtons disease. J Neuropath Exp Neur 1985; 44: 559–77.CrossrefGoogle Scholar

  • 4.

    Poirier MA, Li HL, Macosko J, Cai SW, Amzel M, Ross CA. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem 2002; 277: 41032–7.Google Scholar

  • 5.

    Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin Z-H, Aronin N, DiFiglia M. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA 2001; 98: 12784–9.CrossrefGoogle Scholar

  • 6.

    Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH, Kaminsky Z, Masone J, Khan FA, Delanoy M, Borchelt DR, Dawson VL, Dawson TM, Ross CA. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet 1998; 7: 783–90.CrossrefGoogle Scholar

  • 7.

    Hoffner G, Island M-L, Djian P. Purification of neuronal inclusions of patients with Huntington’s disease reveals a broad range of N-terminal fragments of expanded huntingtin and insoluble polymers. J Neurochem 2005; 95: 125–36.CrossrefGoogle Scholar

  • 8.

    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90: 537–48.CrossrefGoogle Scholar

  • 9.

    Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J, Ellerby LM, Trottier Y, Richards WG, Osmand A, Paganetti P, Bates GP. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem 2010; 285: 8808–23.Google Scholar

  • 10.

    Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, Smith DL, Faull RLM, Roos RAC, Howland D, Detloff PJ, Housman DE, Bates GP. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci USA 2013; 110: 2366–70.Google Scholar

  • 11.

    Neuwald AF, Hirano T. HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 2000; 10: 1445–52.CrossrefGoogle Scholar

  • 12.

    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277: 1990–3.Google Scholar

  • 13.

    Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 1999; 19: 2522–34.Google Scholar

  • 14.

    Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007; 16: 2600–15.CrossrefGoogle Scholar

  • 15.

    Kegel-Gleason KB. Huntingtin interactions with membrane phospholipids: strategic targets for therapeutic intervention? J Huntingt Dis 2013; 2: 239–50.Google Scholar

  • 16.

    Leitman J, Ulrich Hartl F, Lederkremer GZ. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat Commun 2013; 4: 2753.Google Scholar

  • 17.

    Weber JJ, Sowa AS, Binder T, Hübener J. From pathways to targets: understanding the mechanisms behind polyglutamine disease. BioMed Res Int 2014; 2014: 22.Google Scholar

  • 18.

    Penney JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH. CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 1997; 41: 689–92.CrossrefGoogle Scholar

  • 19.

    Snell RG, Macmillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, Macdonald ME, Gusella JF, Harper PS, Shaw DJ. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntingtons disease. Nat Genet 1993; 4: 393–7.CrossrefGoogle Scholar

  • 20.

    Tobin AJ, Signer ER. Huntington’s disease: the challenge for cell biologists. Trends Cell Biol 2000; 10: 531–6.CrossrefGoogle Scholar

  • 21.

    Roizin L, Stellar S, Willson N, Whittier J, Liu JC. Electron microscope and enzyme studies in cerebral biopsies of Huntington’s chorea. Trans Am Neurol Assoc 1974; 99: 240–3.Google Scholar

  • 22.

    Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci 2000; 23: 217–47.CrossrefGoogle Scholar

  • 23.

    Arrasate M, Finkbeiner S. Protein aggregates in Huntington’s disease. Exp Neurol 2012; 238: 1–11.Google Scholar

  • 24.

    Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431: 805–10.Google Scholar

  • 25.

    Miller J, Arrasate M, Brooks E, Libeu CP, Legleiter J, Hatters D, Curtis J, Cheung K, Krishnan P, Mitra S, Widjaja K, Shaby BA, Lotz GP, Newhouse Y, Mitchell EJ, Osmand A, Gray M, Thulasiramin V, Saudou F, Segal M, Yang XW, Masliah E, Thompson LM, Muchowski PJ, Weisgraber KH, Finkbeiner S. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat Chem Biol 2011; 7: 925–34.CrossrefGoogle Scholar

  • 26.

    Muchowski PJ, Ning K, D’Souza-Schorey C, Fields S. Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc Natl Acad Sci USA 2002; 99: 727–32.CrossrefGoogle Scholar

  • 27.

    Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95: 55–66.CrossrefGoogle Scholar

  • 28.

    Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 1997; 90: 549–58.CrossrefGoogle Scholar

  • 29.

    Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, Goto Y, Naiki H, Toda T. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 2007;14: 332–40.CrossrefGoogle Scholar

  • 30.

    Chen S, Berthelier V, Yang W, Wetzel R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 2001; 311: 173–82.Google Scholar

  • 31.

    Vitalis A, Wang X, Pappu RV. Quantitative characterization of intrinsic disorder in polyglutamine: Insights from analysis based on polymer theories. Biophys J 2007; 93: 1923–37.CrossrefGoogle Scholar

  • 32.

    Vitalis A, Wang X, Pappu RV. Atomistic simulations of the effects of polyglutamine chain length and solvent quality on conformational equilibria and spontaneous homodimerization. J Mol Biol 2008; 384: 279–97.Google Scholar

  • 33.

    Wang XL, Vitalis A, Wyczalkowski MA, Pappu RV. Characterizing the conformational ensemble of monomeric polyglutamine. Proteins 2006; 63: 297–311.Google Scholar

  • 34.

    Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 1999; 96: 4604–9.CrossrefGoogle Scholar

  • 35.

    Chen SM, Berthelier V, Hamilton JB, O’Nuallain B, Wetzel R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 2002; 41: 7391–9.CrossrefGoogle Scholar

  • 36.

    Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421: 466–90.Google Scholar

  • 37.

    Lunkes A, Mandel JL. A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum Mol Genet 1998; 7: 1355–61.CrossrefGoogle Scholar

  • 38.

    Hackam AS, Singaraja R, Wellington CL, Metzler M, McCutcheon K, Zhang TQ, Kalchman M, Hayden MR. The influence of Huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol 1998; 141: 1097–105.Google Scholar

  • 39.

    Tanaka M, Morishima I, Akagi T, Hashikawa T, Nukina N. Intra- and intermolecular β-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J Biol Chem 2001; 276: 45470–5.Google Scholar

  • 40.

    Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol 2004; 11: 1215–22.Google Scholar

  • 41.

    Chen SM, Ferrone FA, Wetzel R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 2002; 99: 11884–9.CrossrefGoogle Scholar

  • 42.

    Kar K, Jayaraman M, Sahoo B, Kodali R, Wetzel R. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol 2011; 18: 328.CrossrefGoogle Scholar

  • 43.

    Walters RH, Murphy RM. Examining polyglutamine peptide length: a connection between collapsed conformations and increased aggregation. J Mol Biol 2009; 393: 978–92.Google Scholar

  • 44.

    Walters RH, Murphy RM. aggregation kinetics of interrupted polyglutamine peptides. J Mol Biol 2011; 412: 505–19.Google Scholar

  • 45.

    Nucifora LG, Burke KA, Feng X, Arbez N, Zhu SS, Miller J, Yang GC, Ratovitski T, Delannoy M, Muchowski PJ, Finkbeiner S, Legleiter J, Ross CA, Poirier MA. Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem 2012; 287: 16017–28.Google Scholar

  • 46.

    Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL, Finkbeiner S, Patterson PH, Muchowski PJ. Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 2009; 284: 21647–58.Google Scholar

  • 47.

    Bernacki JP, Murphy RM. Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys J 2009; 96: 2871–87.CrossrefGoogle Scholar

  • 48.

    Nekooki-Machida Y, Kurosawab M, Nukina N, Ito K, Oda T, Tanaka M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc Natl Acad Sci USA 2009; 106: 9679–84.Google Scholar

  • 49.

    Kim M. Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues. Prion 2013; 7: 221–8.CrossrefGoogle Scholar

  • 50.

    Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I. secondary structure of huntingtin amino-terminal region. Structure 2009; 17: 1205–12.CrossrefGoogle Scholar

  • 51.

    Bulone D, Masino L, Thomas DJ, Biagio PLS, Pastore A. The interplay between PolyQ and protein context delays aggregation by forming a reservoir of protofibrils. PLoS One 2006; 1: e111.Google Scholar

  • 52.

    Duennwald ML, Jagadish S, Giorgini F, Muchowski PJ, Lindquist S. A network of protein interactions determines polyglutamine toxicity. Proc Natl Acad Sci USA 2006; 103: 11051–6.CrossrefGoogle Scholar

  • 53.

    Duennwald ML, Jagadish S, Muchowski PJ, Lindquist S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci USA 2006; 103: 11045–50.CrossrefGoogle Scholar

  • 54.

    Ignatova Z, Gierasch LM. Extended polyglutamine tracts cause aggregation and structural perturbation of an adjacent β barrel protein. J Biol Chem 2006; 281: 12959–67.Google Scholar

  • 55.

    La Spada AR, Taylor JP. Polyglutamines placed into context. Neuron 2003; 38: 681–4.CrossrefGoogle Scholar

  • 56.

    Menon RP, Pastore A. Expansion of amino acid homo-sequences in proteins: insights into the role of amino acid homo-polymers and of the protein context in aggregation. Cell Mol Life Sci 2006; 63: 1677–85.CrossrefGoogle Scholar

  • 57.

    Nozaki K, Onodera O, Takano H, Tsuji S. Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation. Neuroreport 2001; 12: 3357–64.CrossrefGoogle Scholar

  • 58.

    Bhattacharyya A, Thakur AK, Chellgren VM, Thiagarajan G, Williams AD, Chellgren BW, Creamer TP, Wetzel R. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 2006; 355: 524–35.Google Scholar

  • 59.

    Darnell G, Orgel JPRO, Pahl R, Meredith SC. Flanking polyproline sequences inhibit β-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J Mol Biol 2007; 374: 688–704.Google Scholar

  • 60.

    Qin ZH, Wang YM, Sapp E, Cuiffo B, Wanker E, Hayden MR, Kegel KB, Aronin N, DiFiglia M. Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 2004; 24: 269–81.CrossrefGoogle Scholar

  • 61.

    Khoshnan A, Ko J, Patterson PH. Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc Natl Acad Sci USA 2002; 99: 1002–7.CrossrefGoogle Scholar

  • 62.

    Southwell AL, Khoshnan A, Dunn DE, Bugg CW, Lo DC, Patterson PH. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci 2008; 28: 9013–20.CrossrefGoogle Scholar

  • 63.

    Southwell AL, Ko J, Patterson PH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci 2009; 29: 13589–602.CrossrefGoogle Scholar

  • 64.

    Crick SL, Ruff KM, Garai K, Frieden C, Pappu RV. Unmasking the roles of N- and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation. Proc Natl Acad Sci USA 2013; 110: 20075–80.Google Scholar

  • 65.

    Mishra R, Hoop CL, Kodali R, Sahoo B, van der Wel PCA, Wetzel R. Serine phosphorylation suppresses huntingtin amyloid accumulation by altering protein aggregation properties. J Mol Biol 2012; 424: 1–14.Google Scholar

  • 66.

    Sivanandam VN, Jayaraman M, Hoop CL, Kodali R, Wetzel R, van der Wel PCA. The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc 2011; 133: 4558–66.Google Scholar

  • 67.

    Kelley NW, Huang X, Tam S, Spiess C, Frydman J, Pande VS. The predicted structure of the headpiece of the huntingtin protein and its implications on huntingtin aggregation. J Mol Biol 2009; 388: 919–27.Google Scholar

  • 68.

    Williamson TE, Vitalis A, Crick SL, Pappu RV. Modulation of polyglutamine conformations and dimer formation by the N-Terminus of huntingtin. J Mol Biol 2010; 396: 1295–309.Google Scholar

  • 69.

    Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJL, Anjum DH, Kodali R, Creamer TP, Conway JF, Gronenborn AM, Wetzel R. Polyglutamine disruption of the huntingtin exon 1 N-terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 2009; 16: 380–9.Google Scholar

  • 70.

    Vitalis A, Pappu RV. Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides. Biophys Chem 2011; 159: 14–23.Google Scholar

  • 71.

    Jayaraman M, Kodali R, Sahoo B, Thakur AK, Mayasundari A, Mishra R, Peterson CB, Wetzel R. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments. J Mol Biol 2012; 415: 881–99.Google Scholar

  • 72.

    Olshina MA, Angley LM, Ramdzan YM, Tang JW, Bailey MF, Hill AF, Hatters DM. Tracking mutant huntingtin aggregation kinetics in cells reveals three major populations that include an invariant oligomer pool. J Biol Chem 2010; 285: 21807–16.Google Scholar

  • 73.

    Burke KA, Kauffman KJ, Umbaugh CS, Frey SL, Legleiter J. The interaction of polyglutamine peptides with lipid membranes is regulated by flanking sequences associated with huntingtin. J Biol Chem 2013; 288: 14993–5005.Google Scholar

  • 74.

    Burke KA, Godbey J, Legleiter J. Assessing mutant huntingtin fragment and polyglutamine aggregation by atomic force microscopy. Methods 2011; 53: 275–84.CrossrefGoogle Scholar

  • 75.

    Sahoo B, Singer D, Kodali R, Zuchner T, Wetzel R. aggregation behavior of chemically synthesized, full-length huntingtin exon1. Biochemistry 2014; 53: 3897–907.Google Scholar

  • 76.

    Mishra R, Jayaraman M, Roland BP, Landrum E, Fullam T, Kodali R, Thakur AK, Arduini I, Wetzel R. Inhibiting the nucleation of amyloid structure in a huntingtin fragment by targeting a-helix-rich oligomeric intermediates. J Mol Biol; 2012; 415: 900–17.Google Scholar

  • 77.

    Drin G, Antonny B. Amphipathic helices and membrane curvature. FEBS Lett 2010; 584: 1840–7.Google Scholar

  • 78.

    Brass V, Bieck E, Montserret R, Wölk B, Hellings JA, Blum HE, Penin F, Moradpour D. An amino-terminal amphipathic α-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem 2002; 277: 8130–9.CrossrefGoogle Scholar

  • 79.

    Georgieva Elka R, Xiao S, Borbat Peter P, Freed Jack H, Eliezer D. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. Biophys J 2014; 107: 1441–52.CrossrefGoogle Scholar

  • 80.

    Cui H, Lyman E, Voth GA. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys J 2011; 100: 1271–9.CrossrefGoogle Scholar

  • 81.

    Chaibva M, Burke KA, Legleiter J. Curvature enhances binding and aggregation of huntingtin at lipid membranes. Biochemistry 2014; 53: 2355–65.CrossrefGoogle Scholar

  • 82.

    Gouttenoire J, Roingeard P, Penin F, Moradpour D. Amphipathic α-helix AH2 is a major determinant for the oligomerization of hepatitis C virus nonstructural protein 4B. J Virol 2010; 84: 12529–37.Google Scholar

  • 83.

    Westerlund JA, Weisgraber KH. Discrete carboxyl-terminal segments of apolipoprotein E mediate lipoprotein association and protein oligomerization. J Biol Chem 1993; 268: 15745–50.Google Scholar

  • 84.

    Nagarajan A, Jawahery S, Matysiak S. The effects of flanking sequences in the interaction of polyglutamine peptides with a membrane bilayer. J Phys Chem B 2014; 118: 6368–79.CrossrefGoogle Scholar

  • 85.

    Arndt JR, Brown RJ, Burke KA, Legleiter J, Valentine SJ. Lysine residues in the N-terminal huntingtin amphipathic α-helix play a key role in peptide aggregation. J Mass Spectrom 2015; 50: 117–26.CrossrefGoogle Scholar

  • 86.

    Rossetti G, Cossio P, Laio A, Carloni P. Conformations of the Huntingtin N-term in aqueous solution from atomistic simulations. FEBS Lett 2011; 585: 3086–9.Google Scholar

  • 87.

    Dlugosz M, Trylska J. Secondary structures of native and pathogenic huntingtin N-terminal fragments. J Phys Chem B 2011; 115: 11597–608.CrossrefGoogle Scholar

  • 88.

    Bugg CW, Isas JM, Fischer T, Patterson PH, Langen R. Structural features and domain organization of huntingtin fibrils. J Biol Chem 2012; 287: 31739–46.Google Scholar

  • 89.

    Burke KA, Hensal KM, Umbaugh CS, Chaibva M, Legleiter J. Huntingtin disrupts lipid bilayers in a polyQ-length dependent manner. BBA Biomembr 2013; 1828: 1953–61.Google Scholar

  • 90.

    Hoop CL, Lin H-K, Kar K, Hou Z, Poirier MA, Wetzel R, van der Wel PCA. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance. Biochemistry 2014; 53: 6653–66.CrossrefGoogle Scholar

  • 91.

    Jayaraman M, Mishra R, Kodali R, Thakur AK, Koharudin LMI, Gronenborn AM, Wetzel R. Kinetically competing huntingtin aggregation pathways control amyloid polymorphism and properties. Biochemistry 2012; 51: 2706–16.CrossrefGoogle Scholar

  • 92.

    Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM, Messer A, Lindquist S, Ingram VM, Wittrup KD. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci USA 2004; 101: 17616–21.CrossrefGoogle Scholar

  • 93.

    Colby DW, Garg P, Holden T, Chao G, Webster JM, Messer A, Ingram VM, Wittrup KD. Development of a human light chain variable domain (VL) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J Mol Biol 2004; 342: 901–12.Google Scholar

  • 94.

    Tam S, Geller R, Spiess C, Frydman J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 2006; 8: 1155–62.CrossrefGoogle Scholar

  • 95.

    Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, Poirier MA, Frydman J. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 2009; 16: 1279–85.CrossrefGoogle Scholar

  • 96.

    McLear JA, Lebrecht D, Messer A, Wolfgang WJ. Combinational approach of intrabody with enhanced Hsp70 expression addresses multiple pathologies in a fly model of Huntington’s disease. FASEB J 2008; 22: 2003–11.Google Scholar

  • 97.

    Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL, Messer A. Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci USA 2005; 102: 11563–8.CrossrefGoogle Scholar

  • 98.

    Wacker JL, Huang S-Y, Steele AD, Aron R, Lotz GP, Nguyen Q, Giorgini F, Roberson ED, Lindquist S, Masliah E, Muchowski PJ. Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J Neurosci 2009; 29: 9104–14.Google Scholar

  • 99.

    Lotz GP, Legleiter J, Aron R, Mitchell EJ, Huang S-Y, Ng C, Glabe C, Thompson LM, Muchowski PJ. Hsp70 and hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J Biol Chem 2010; 285: 38183–93.Google Scholar

  • 100.

    Monsellier E, Redeker V, Ruiz-Arlandis G, Bousset L, Melki R. Molecular interaction between the chaperone Hsc70 and the N-terminal flank of huntingtin exon 1 modulates aggregation. J Biol Chem 2015; 290: 2560–76.Google Scholar

  • 101.

    Li P, Huey-Tubman KE, Gao T, Li X, West AP Jr, Bennett MJ, Bjorkman PJ. The structure of a polyQ-anti-polyQ complex reveals binding according to a linear lattice model. Nat Struct Mol Biol 2007; 14: 381–7.CrossrefGoogle Scholar

  • 102.

    Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res Bull 2001; 56: 319–29.CrossrefGoogle Scholar

  • 103.

    Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, Agid Y, Brice A, Mandel JL. Polyglutamine expansion as a pathological epitope in huntingtons disease and 4 dominant cerebellar ataxias. Nature 1995; 378: 403–6.Google Scholar

  • 104.

    Bennett MJ, Huey-Tubman KE, Herr AB, West AP, Ross SA, Bjorkman PJ. A linear lattice model for polyglutamine in CAG-expansion diseases. Proc Natl Acad Sci USA 2002; 99: 11634–9.CrossrefGoogle Scholar

  • 105.

    Lecerf JM, Shirley TL, Zhu Q, Kazantsev A, Amersdorfer P, Housman DE, Messer A, Huston JS. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci USA 2001; 98: 4764–9.CrossrefGoogle Scholar

  • 106.

    Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 2004; 304: 100–4.Google Scholar

  • 107.

    Pennuto M, Palazzolo I, Poletti A. Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity. Hum Mol Genet 2009; 18: R40–R47.Google Scholar

  • 108.

    Ehrnhoefer DE, Sutton L, Hayden MR. Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 2011; 17: 475–92.CrossrefGoogle Scholar

  • 109.

    Dorval V, Fraser PE. SUMO on the road to neurodegeneration. BBA Mol Cell Res 2007; 1773: 694–706.Google Scholar

  • 110.

    Díaz Hernández M, Valera AG, Morán MA, Gómez Ramos P, Alvarez Castelao B, Castaño JG, Hernández F, Lucas JJ. Inhibition of 26S proteasome activity by huntingtin filaments but not inclusion bodies isolated from mouse and human brain. J Neurochem 2006; 98: 1585–96.CrossrefGoogle Scholar

  • 111.

    Borrell-Pages M, Zala D, Humbert S, Saudou F. Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 2006; 63: 2642–60.CrossrefGoogle Scholar

  • 112.

    O’Rourke JG, Gareau JR, Ochaba J, Song W, Rasko T, Reverter D, Lee J, Monteys AM, Pallos J, Mee L, Vashishtha M, Apostol BL, Nicholson TP, Illes K, Zhu YZ, Dasso M, Bates GP, Difiglia M, Davidson B, Wanker EE, Marsh JL, Lima CD, Steffan JS, Thompson LM. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep 2013; 4: 362–75.Google Scholar

  • 113.

    Hannoun Z, Greenhough S, Jaffray E, Hay RT, Hay DC. Post-translational modification by SUMO. Toxicology 2010; 278: 288–93.Google Scholar

  • 114.

    Aiken CT, Steffan JS, Guerrero CM, Khashwji H, Lukacsovich T, Simmons D, Purcell JM, Menhaji K, Zhu YZ, Green K, LaFerla F, Huang L, Thompson LM, Marsh JL. Phosphorylation of threonine 3 implications for huntingtin aggregation and neurotoxicty. J Biol Chem 2009; 284: 29427–36.Google Scholar

  • 115.

    Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J, Ciammola A, Steffan JS, Fouad K, Truant R, Sipione S. Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci USA 2012; 109: 3528–33.Google Scholar

  • 116.

    Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O’Rourke JG, Khashwji H, Lukacsovich T, Zhu YZ, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 2009; 187: 1083–99.Google Scholar

  • 117.

    Gu XF, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, Steffan JS, Thompson LM, Wetzel R, Yang XW. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009; 64: 828–40.Google Scholar

  • 118.

    Jeong H, Then F, Melia TJ, Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC, Yamamoto A, Krainc D. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009; 137: 60–72.CrossrefGoogle Scholar

  • 119.

    Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 1996; 271: 19385–94.Google Scholar

  • 120.

    Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L, Orban PC, Mullard A, Cowan CM, Raymond LA, Drisdel RC, Green WN, Ravikumar B, Rubinsztein DC, El-Husseini A, Hayden MR. Palmitoylation of huntingtin by HIP14is essential for its trafficking and function. Nat Neurosci 2006; 9: 824–31.Google Scholar

  • 121.

    Kahlem P, Green H, Djian P. Transglutaminase action imitates Huntington’s disease: selective polymerization of huntingtin containing expanded polyglutamine. Mol Cell 1998; 1: 595–601.Google Scholar

  • 122.

    Warby SC, Chan EYW, Metzler M, Gan L, Singaraja RR, Crocker SF, Robertson HA, Hayden MR. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum Mol Genet 2005; 14: 1569–77.CrossrefGoogle Scholar

  • 123.

    Humbert S, Saudou F. Huntingtin phosphorylation and signaling pathways that regulate toxicity in Huntington’s disease. Clin Neurosci Res 2003; 3: 149–55.CrossrefGoogle Scholar

  • 124.

    Watkin EE, Arbez N, Waldron-Roby E, O’Meally R, Ratovitski T, Cole RN, Ross CA. Phosphorylation of mutant huntingtin at serine 116 modulates neuronal toxicity. PLoS One 2014; 9: e88284.CrossrefGoogle Scholar

  • 125.

    Atwal RS, Desmond CR, Caron N, Maiuri T, Xia J, Sipione S, Truant R. Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol 2011; 7: 453–60.CrossrefGoogle Scholar

  • 126.

    Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009; 324: 1327–30.Google Scholar

  • 127.

    Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N. Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 2005; 280: 11635–40.Google Scholar

  • 128.

    Cong X, Held JM, DeGiacomo F, Bonner A, Chen JM, Schilling B, Czerwieniec GA, Gibson BW, Ellerby LM. Mass spectrometric identification of novel lysine acetylation sites in huntingtin. Mol Cell Proteiomics 2011; 10: M111.009829.Google Scholar

  • 129.

    Gunawardena S, Her L-S, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LSB. disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 2003; 40: 25–40.CrossrefGoogle Scholar

  • 130.

    Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004; 118: 127–38.CrossrefGoogle Scholar

  • 131.

    Lee W-CM, Yoshihara M, Littleton JT. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci USA 2004; 101: 3224–9.CrossrefGoogle Scholar

  • 132.

    Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. Huntingtin- HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol 2006; 172: 605–18.Google Scholar

  • 133.

    Persichetti F, Trettel F, Huang CC, Fraefel C, Timmers HTM, Gusella JF, MacDonald ME. Mutant huntingtin forms in vivo complexes with distinct context-dependent conformations of the polyglutamine segment. Neurobiol Dis 1999; 6: 364–75.CrossrefGoogle Scholar

  • 134.

    Zheng Z, Li A, Holmes BB, Marasa JC, Diamond MI. An N-terminal nuclear export signal regulates trafficking and aggregation of huntingtin (Htt) protein exon 1. J Biol Chem 2013; 288: 6063–71.Google Scholar

  • 135.

    Kegel KB, Sapp E, Yoder J, Cuiffo B, Sobin L, Kim YJ, Qin ZH, Hayden MR, Aronin N, Scott DL, Isenberg F, Goldmann WH, DiFiglia M. Huntingtin associates with acidic phospholipids at the plasma membrane. J Biol Chem 2005; 280: 36464–73.Google Scholar

  • 136.

    Suopanki J, Gotz C, Lutsch G, Schiller J, Harjes P, Herrmann A, Wanker EE. Interaction of huntingtin fragments with brain membranes – clues to early dysfunction in Huntington’s disease. J Neurochem 2006; 96: 870–84.CrossrefGoogle Scholar

  • 137.

    Strehlow ANT, Li JZ, Myers RM. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet 2007; 16: 391–409.Google Scholar

  • 138.

    Myre MA, Lumsden AL, Thompson MN, Wasco W, MacDonald ME, Gusella JF. Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genet 2011; 7: e1002052.CrossrefGoogle Scholar

  • 139.

    Ritch JJ, Valencia A, Alexander J, Sapp E, Gatune L, Sangrey GR, Sinha S, Scherber CM, Zeitlin S, Sadri-Vakili G, Irimia D, DiFiglia M, Kegel KB. Multiple phenotypes in Huntington disease mouse neural stem cells. Mol Cell Neurosci 2012; 50: 70–81.CrossrefGoogle Scholar

  • 140.

    Jacobsen JC, Gregory GC, Woda JM, Thompson MN, Coser KR, Murthy V, Kohane IS, Gusella JF, Seong IS, MacDonald ME, Shioda T, Lee J-M. HD CAG-correlated gene expression changes support a simple dominant gain of function. Hum Mol Genet 2011; 20: 2846–60.CrossrefGoogle Scholar

  • 141.

    Caviston JP, Holzbaur ELF. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 2009; 19: 147–55.CrossrefGoogle Scholar

  • 142.

    Rockabrand E, Slepko N, Pantalone A, Nukala VN, Kazantsev A, Marsh JL, Sullivan PG, Steffan JS, Sensi SL, Thompson LM. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 2007; 16: 61–77.Google Scholar

  • 143.

    Michalek M, Salnikov ES, Bechinger B. Structure and topology of the huntingtin 1-17 membrane anchor by a combined solution and solid-state NMR approach. Biophys J 2013; 105: 699–710.CrossrefGoogle Scholar

  • 144.

    Michalek M, Salnikov ES, Werten S, Bechinger B. Membrane interactions of the amphipathic amino-terminus of huntingtin. Biochemistry 2013; 52: 847–58.CrossrefGoogle Scholar

  • 145.

    Caron NS, Desmond CR, Xia J, Truant R. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc Natl Acad Sci USA 2013; 110: 14610–5.CrossrefGoogle Scholar

  • 146.

    Burke KA, Yates EA, Legleiter J. Amyloid-forming proteins alter the local mechanical properties of lipid membranes. Biochemistry 2013; 52: 808–17.CrossrefGoogle Scholar

  • 147.

    Xia JR, Lee DH, Taylor J, Vandelft M, Truant R. Huntingtin contains a highly conserved nuclear export signal. Hum Mol Genet 2003; 12: 1393–403.CrossrefGoogle Scholar

  • 148.

    McLaughlin S, Murray D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 2005; 438: 605–11.Google Scholar

  • 149.

    Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. Membrane phosphatidylserine regulates surface charge and protein localization. Science 2008; 319: 210–3.Google Scholar

  • 150.

    Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 2007; 8: 74–84.CrossrefGoogle Scholar

  • 151.

    Manneville J-B, Casella J-F, Ambroggio E, Gounon P, Bertherat J, Bassereau P, Cartaud J, Antonny B, Goud B. COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc Natl Acad Sci USA 2008; 105: 16946–51.CrossrefGoogle Scholar

  • 152.

    Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PIH. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 2005; 307: 1746–52.Google Scholar

  • 153.

    Lemmon MA. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 2008; 9: 99–111.CrossrefGoogle Scholar

  • 154.

    McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 2005; 438: 590–6.Google Scholar

  • 155.

    Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 2007; 10: 1355–60.CrossrefGoogle Scholar

  • 156.

    Giorgini F, Guidetti P, Nguyen QV, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005; 37: 526–31.Google Scholar

  • 157.

    Yang W, Dunlap JR, Andrews RB, Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 2002; 11: 2905–17.CrossrefGoogle Scholar

  • 158.

    Ren P-H, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 2009; 11: 219–25.CrossrefGoogle Scholar

  • 159.

    Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR, Li XJ, Parker JR, Chu Y, Mufson EJ, Kordower JH, Freeman TB. Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci USA 2009; 106: 12483–8.CrossrefGoogle Scholar

About the article

Corresponding author: Justin Legleiter, The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University, Morgantown, WV 26506, USA; Center for Neuroscience, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University, Morgantown WV, 26506, USA; and NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown WV, 26506, USA, e-mail:


Received: 2015-01-16

Accepted: 2015-02-09

Published Online: 2015-03-03

Published in Print: 2015-03-01


Citation Information: Biomolecular Concepts, ISSN (Online) 1868-503X, ISSN (Print) 1868-5021, DOI: https://doi.org/10.1515/bmc-2015-0001.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Anass Chiki, Sean M. DeGuire, Francesco S. Ruggeri, Domenico Sanfelice, Annalisa Ansaloni, Zhe-Ming Wang, Urszula Cendrowska, Ritwik Burai, Sophie Vieweg, Annalisa Pastore, Giovanni Dietler, and Hilal A. Lashuel
Angewandte Chemie International Edition, 2017, Volume 56, Number 19, Page 5202
[3]
Anass Chiki, Sean M. DeGuire, Francesco S. Ruggeri, Domenico Sanfelice, Annalisa Ansaloni, Zhe-Ming Wang, Urszula Cendrowska, Ritwik Burai, Sophie Vieweg, Annalisa Pastore, Giovanni Dietler, and Hilal A. Lashuel
Angewandte Chemie, 2017, Volume 129, Number 19, Page 5286
[4]
Adewale Adegbuyiro, Faezeh Sedighi, Albert W. Pilkington, Sharon Groover, and Justin Legleiter
Biochemistry, 2017, Volume 56, Number 9, Page 1199
[5]
Maxmore Chaibva, Sudi Jawahery, Albert W. Pilkington, James R. Arndt, Olivia Sarver, Stephen Valentine, Silvina Matysiak, and Justin Legleiter
Biophysical Journal, 2016, Volume 111, Number 2, Page 349

Comments (0)

Please log in or register to comment.
Log in