Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomolecular Concepts

Editor-in-Chief: Jollès, Pierre / Mansuy, Isabelle

Editorial Board Member: Avila, Jesus / Bonetto, Valentina / Cera, Enrico / Jorgensen, Erik / Jörnvall, Hans / Lagasse, Eric / Norman, Robert / Pinna, Lorenzo / Raghavan, K. Vijay / Venetianer, Pal / Wahli, Walter

6 Issues per year


CiteScore 2016: 2.39

SCImago Journal Rank (SJR) 2016: 0.753
Source Normalized Impact per Paper (SNIP) 2016: 0.567

Online
ISSN
1868-503X
See all formats and pricing
More options …

Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling

Shannon N. TessierORCID iD: http://orcid.org/0000-0003-2373-232X
  • Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
  • ORCID iD: http://orcid.org/0000-0003-2373-232X
/ Kenneth B. Storey
  • Corresponding author
  • Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
  • Email:
Published Online: 2016-03-16 | DOI: https://doi.org/10.1515/bmc-2015-0031

Abstract

Striated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.

Keywords: antioxidant pathways; macroautophagy; mammalian hibernation; muscle mass; structural proteins; ubiquitin proteosomal machinery

References

  • 1.

    Buller AJ, Eccles JC, Eccles RM. Differentiation of fast and slow muscles in cat hind limb. J Physiol 1960; 150: 399–416.Google Scholar

  • 2.

    Dorfman TA, Levine BD, Tillery T, Peshock RM, Hastings JL, Schneider SM, Macias BR, Biolo G, Hargens AR. Cardiac atrophy in women following bed rest. J Appl Physiol 2007; 103: 8–16.Google Scholar

  • 3.

    Zhang P, Chen X, Fan M. Signaling mechanisms involved in disuse muscle atrophy. Med Hypotheses 2007; 69: 310–21.Google Scholar

  • 4.

    Chambers MA, Moylan JS, Reid MB. Physical inactivity and muscle weakness in the critically ill. Crit Care Med 2009; 37: S337–46.Google Scholar

  • 5.

    Bhatnagar S, Kumar A. Therapeutic targeting of signaling pathways in muscular dystrophy. J Mol Med (Berl) 2010; 88: 155–66.Google Scholar

  • 6.

    Hill JA, Olson EN. Cardiac plasticity. N Engl J Med 2008; 358: 1370–80.Google Scholar

  • 7.

    Karagounis LG, Hawley JA. Skeletal muscle: increasing the size of the locomotor cell. Int J Biochem Cell Biol 2010; 42: 1376–9.Google Scholar

  • 8.

    Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 2003; 92: 1079–88.Google Scholar

  • 9.

    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004; 117: 399–412.Google Scholar

  • 10.

    Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 2006; 103: 16260–5.Google Scholar

  • 11.

    McKinnell IW, Rudnicki MA. Molecular mechanisms of muscle atrophy. Cell 2004; 119: 907–10.Google Scholar

  • 12.

    Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol 2009; 107: 645–54.Google Scholar

  • 13.

    Nakamura A, Takeda S. Mammalian models of Duchenne muscular dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011; 2011: 184393.Google Scholar

  • 14.

    Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Markou T, Pikkarainen S, Sugden PH. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol 2007; 212: 311–22.Google Scholar

  • 15.

    Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation 2004; 109: 1580–9.Google Scholar

  • 16.

    Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 2005; 37: 2098–114.Google Scholar

  • 17.

    Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14: 395–403.Google Scholar

  • 18.

    Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 2006; 75: 19–37.Google Scholar

  • 19.

    Taillandier D, Combaret L, Pouch MN, Samuels SE, Béchet D, Attaix D. The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle. Proc Nutr Soc 2004; 63: 357–61.Google Scholar

  • 20.

    Farah CS, Reinach FC. The troponin complex and regulation of muscle contraction. FASEB J 1995; 9: 755–67.Google Scholar

  • 21.

    Lehman W, Craig R. Tropomyosin and the steric mechanism of muscle regulation. Adv Exp Med Biol 2008; 644: 95–109.Google Scholar

  • 22.

    Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R. Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 2009; 388: 673–81.Google Scholar

  • 23.

    Chang AN, Parvatiyar MS, Potter JD. Troponin and cardiomyopathy. Biochem Biophys Res Commun 2008; 369: 74–81.Google Scholar

  • 24.

    Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995; 332: 1058–64.Google Scholar

  • 25.

    Wieczorek DF, Jagatheesan G, Rajan S. The role of tropomyosin in heart disease. Adv Exp Med Biol 2008; 644: 132–42.Google Scholar

  • 26.

    Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50: 500–9.Google Scholar

  • 27.

    Potthoff MJ, Olson EN, Bassel-Duby R. Skeletal muscle remodeling. Curr Opin Rheumatol 2007; 19: 542–9.Google Scholar

  • 28.

    Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2011; 23: 39–46.Google Scholar

  • 29.

    Obermann WMJ, Gautel M, Weber K, Fürst DO. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 1997; 16: 211–20.Google Scholar

  • 30.

    Peng J, Raddatz K, Labeit S, Granzier H, Gotthardt M. Muscle atrophy in titin M-line deficient mice. J Muscle Res Cell Motil 2005; 26: 381–388.Google Scholar

  • 31.

    Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 2007; 313: 2063–76.Google Scholar

  • 32.

    Chockalingam SP, Cholera R, Oak SA, Zheng Y, Jarrett HW, Thomason DB. Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am J Physiol 2002; 283: C500–11.Google Scholar

  • 33.

    Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 2009; 119: 1806–13.Google Scholar

  • 34.

    Paulin D, Huet A, Khanamyrian L, Xue Z. Desminopathies in muscle disease. J Pathol 2004; 204: 418–27.Google Scholar

  • 35.

    Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 2004; 301: 1–7.Google Scholar

  • 36.

    Wang X, Osinska H, Gerdes AM, Robbins J. Desmin filaments and cardiac disease: establishing causality. J Card Fail 2002; 8: S287–92.Google Scholar

  • 37.

    Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 2007; 313: 2050–62.Google Scholar

  • 38.

    Jane-Lise S, Corda S, Chassagne C, Rappaport L. The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 2000; 5: 239–50.Google Scholar

  • 39.

    Kitzman DW. Heart failure with normal systolic function. Clin Geriatr Med 2000; 16: 489–512.Google Scholar

  • 40.

    Jackson MJ. Redox regulation of adaptive responses in skeletal muscle to contractile activity. Free Radic Biol Med 2009; 47: 1267–75.Google Scholar

  • 41.

    Aucello M, Dobrowolny G, Musarò A. Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway. Autophagy 2009; 5: 527–9.Google Scholar

  • 42.

    Whitehead NP, Yeung EW, Allen DG. Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 2006; 33: 657–62.Google Scholar

  • 43.

    Passarelli C, Petrini S, Pastore A, Bonetto V, Sale P, Gaeta LM, Tozzi G, Bertini E, Canepari M, Rossi, R, Piemonte F. Myosin as a potential redox-sensor: an in vitro study. J Muscle Res Cell Motil 2008; 29: 119–26.Google Scholar

  • 44.

    Sumandea MP, Steinberg SF. Redox signaling and cardiac sarcomeres. J Biol Chem 2011; 286: 9921–7.Google Scholar

  • 45.

    Buzadzic B, Spasic MB, Saicic ZS, Radojicic R, Petrovic VM, Halliwell B. Antioxidant defenses in the ground squirrel Citellus citellus. 2. The effect of hibernation. Free Rad Biol Med 1990; 9: 407–13.Google Scholar

  • 46.

    Peviani M, Caron I, Pizzasegola C, Gensano F, Tortarolo M, Bendotti C. Unraveling the complexity of amyotrophic lateral sclerosis: recent advances from the transgenic mutant SOD1 mice. CNS Neurol Disord Drug Targets 2010; 9: 491–503.Google Scholar

  • 47.

    Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010; 49: 835–42.Google Scholar

  • 48.

    Krivoruchko A, Storey KB. Forever young: mechanisms of anoxia tolerance in turtles and possible links to longevity. Oxid Med Cell Longevity 2010; 3: 186–98.Google Scholar

  • 49.

    Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med 2008; 44: 142–152.Google Scholar

  • 50.

    Morin P, Storey KB. Antioxidant defense in hibernation: cloning and expression of peroxiredoxins from hibernating ground squirrels, Spermophilus tridecemlineatus. Arch Biochem Biophys 2007; 461: 59–65.Google Scholar

  • 51.

    Matsushima Y, Nanri H, Nara S, Okufuji T, Ohta M, Hachisuka K, Ikeda M. Hindlimb unloading decreases thioredoxin-related antioxidant proteins and increases thioredoxin-binding protein-2 in rat skeletal muscle. Free Radic Res 2006; 40: 715–22.Google Scholar

  • 52.

    McCarthy JJ, Esser KA. Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care 2010; 13: 230–35.Google Scholar

  • 53.

    Glass DJ. PI3 Kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 2010; 346: 267–78.Google Scholar

  • 54.

    Abdel-Salam E, Abdel-Meguid I, Korraa SS. Markers of degeneration and regeneration in Duchenne muscular dystrophy. Acta Myol 2009; 28: 94–100.Google Scholar

  • 55.

    Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007; 113: 461–87.Google Scholar

  • 56.

    Li HH, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ, Patterson C. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest 2007; 117: 3211–23.Google Scholar

  • 57.

    Geng F, Wenzel S, Tansey WP. Ubiquitin and proteasomes in transcription. Annu Rev Biochem 2012; 81: 177–201.Google Scholar

  • 58.

    Eldridge AG, O’Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 2010; 17: 4–13.Google Scholar

  • 59.

    Dantuma NP, Lindsten K. Stressing the ubiquitin-proteasome system. Cardiovasc Res 2010; 85: 263–71.Google Scholar

  • 60.

    Zhao Y, Wang Y, Zhu WG. Applications of post-translational modifications of FoxO family proteins in biological functions. J Mol Cell Biol 2011; 3: 276–82.Google Scholar

  • 61.

    Foletta VC, White LJ, Larsen AE, Léger B, Russell AP. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 2011; 461: 325–35.Google Scholar

  • 62.

    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294: 1704–08.Google Scholar

  • 63.

    Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001; 306: 717–26.Google Scholar

  • 64.

    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 2009; 185: 1083–95.Google Scholar

  • 65.

    Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA. The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 2008; 27: 1266–76.Google Scholar

  • 66.

    Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 2005; 280: 2847–56.Google Scholar

  • 67.

    Jogo M, Shiraishi S, Tamura TA. Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase. FEBS Lett 2009; 583: 2715–19.Google Scholar

  • 68.

    Zhao TJ, Yan YB, Liu Y, Zhou HM. The generation of the oxidized form of creatine kinase is a negative regulation on muscle creatine kinase. J Biol Chem 2007; 282: 12022–29.Google Scholar

  • 69.

    Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol 2011; 178: 4–11.Google Scholar

  • 70.

    Sandri M. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 2010; 298: C1291–7.Google Scholar

  • 71.

    Kaushik S, Singh R, Cuervo AM. Autophagic pathways and metabolic stress. Diabetes Obes Metab 2010; 12(Suppl 2): 4–14.Google Scholar

  • 72.

    Mizushima N. Autophagy: process and function. Genes Dev 2007; 21: 2861–73.Google Scholar

  • 73.

    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67–93.Google Scholar

  • 74.

    Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009; 11: 385–96.Google Scholar

  • 75.

    Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mul JJ, Pledger WJ, Wang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007; 9: 1142–51.Google Scholar

  • 76.

    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069–75.Google Scholar

  • 77.

    Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol 2008; 445: 77–88.Google Scholar

  • 78.

    Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10: 507–15.Google Scholar

  • 79.

    Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007; 13: 619–24.Google Scholar

  • 80.

    Gustafsson AB, Gottlieb RA. Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol 2008; 44: 654–61.Google Scholar

  • 81.

    Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 2011; 108: 4123–8.Google Scholar

  • 82.

    Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18: 571–80.Google Scholar

  • 83.

    Filtz TM, Vogel WK, Leid M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 2014; 35: 76–85.Google Scholar

  • 84.

    Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005; 363: 15–23.Google Scholar

  • 85.

    Daitoku H, Sakamaki J, Fukamizu A. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim Biophys Acta 2011; 1813: 1954–60.Google Scholar

  • 86.

    Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 2001; 276: 13505–8.Google Scholar

  • 87.

    Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 1996; 93: 9366–73.Google Scholar

  • 88.

    Chan K, Kan YW. Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci USA 1999; 96: 12731–6.Google Scholar

  • 89.

    Storey KB. Out cold: biochemical regulation of mammalian hibernation – a mini-review. Gerontology 2010; 56: 220–30.Google Scholar

  • 90.

    Giudice A, Montella M. Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 2006; 28: 169–81.Google Scholar

  • 91.

    Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011; 16: 123–40.Google Scholar

  • 92.

    Huang HC, Nguyen T, Pickett CB. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci USA 2000; 97: 12475–80.Google Scholar

  • 93.

    Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 2001; 6: 857–68.Google Scholar

  • 94.

    Kawai Y, Garduño L, Theodore M, Yang J, Arinze IJ. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 2011; 286: 7629–40.Google Scholar

  • 95.

    Liu GH, Qu J, Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 2008; 1783: 713–27.Google Scholar

  • 96.

    Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ. Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 2013; 18: 1114–27.Google Scholar

  • 97.

    Lu Z, Xu X, Hu X, Zhu G, Zhang P, van Deel ED, French JP, Fassett JT, Oury TD, Bache RJ, Chen Y. Extracellular superoxide dismutase deficiency exacerbates pressure overload-induced left ventricular hypertrophy and dysfunction. Hypertension 2008; 51: 19–25.Google Scholar

  • 98.

    Hu CM, Chen YH, Chiang MT, Chau LY. Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation 2004; 110: 309–16.Google Scholar

  • 99.

    Li J, Ichikawa T, Villacorta L, Janicki JS, Brower GL, Yamamoto M, Cui T. Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol 2009; 29: 1843–50.Google Scholar

  • 100.

    Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, Colucci WS, Sawyer DB. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 2005; 11: 473–80.Google Scholar

  • 101.

    Narasimhan M, Hong J, Atieno N, Muthusamy VR, Davidson CJ, Abu-Rmaileh N, Richardson RS, Gomes AV, Hoidal JR, Rajasekaran NS. Nrf2 deficiency promotes apoptosis and impairs PAX7/MyoD expression in aging skeletal muscle cells. Free Radic Biol Med 2014; 71: 402–14.Google Scholar

  • 102.

    Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998; 14: 167–96.Google Scholar

  • 103.

    Berkes CA, Tapscott SJ. MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 2005; 16: 585–95.Google Scholar

  • 104.

    Molkentin JD, Black BL, Martin JF, Olson EN. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 1995; 83: 1125–36.Google Scholar

  • 105.

    Kaushal S, Schneider JW, Nadal-Ginard B, Mahdavi V. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science 1994; 266: 1236–40.Google Scholar

  • 106.

    Li H, Capetanaki Y. An E box in the desmin promoter cooperates with the E box and MEF-2 sites of a distal enhancer to direct muscle-specific transcription. EMBO J 1994; 13: 3580–89.Google Scholar

  • 107.

    Rourke BC, Cotton CJ, Harlow HJ, Caiozzo VJ. Maintenance of slow type I myosin protein and mRNA expression in overwintering prairie dogs and black bears. J Comp Physiol B 2006; 176: 709–20.Google Scholar

  • 108.

    Morin S, Charron F, Robitaille L, Nemer M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J 2000; 19: 2046–55.Google Scholar

  • 109.

    Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 1998; 12: 2499–509.Google Scholar

  • 110.

    Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000; 105: 1395–406.Google Scholar

  • 111.

    Lu J, McKinsey TA, Nicol RL, Olson EN. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 2000; 97: 4070–5.Google Scholar

  • 112.

    Sartorelli V, Huang J, Hamamori Y, Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 1997; 17: 1010–26.Google Scholar

  • 113.

    Liu S, Liu P, Borras A, Chatila T, Speck SH. Cyclosporin A-sensitive induction of the Epstein-Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. EMBO J 1997; 16: 143–53.Google Scholar

  • 114.

    Roberts-Wilson TK, Reddy RN, Bailey JL, Zheng B, Ordas R, Gooch JL, Price SR. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes. Biochim Biophys Acta 2010; 1803: 960–7.Google Scholar

  • 115.

    Molkentin JD, Li L, Olson EN. Phosphorylation of the MADS-box transcription factor MEF2C enhances its DNA binding activity. J Biol Chem 1996; 271: 17199–204.Google Scholar

  • 116.

    Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997; 386: 296–9.Google Scholar

  • 117.

    Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997; 16: 7054–66.Google Scholar

  • 118.

    Cox DM, Du M, Marback M, Yang EC, Chan J, Siu KW, McDermott JC. Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J Biol Chem 2003; 278: 15297–303.Google Scholar

  • 119.

    Kang J, Gocke CB, Yu H. Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem 2006; 7: 5.Google Scholar

  • 120.

    Yang CC, Ornatsky OI, McDermott JC, Cruz TF, Prody CA. Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res 1998; 26: 4771–7.Google Scholar

  • 121.

    Angelelli C, Magli A, Ferrari D, Ganassi M, Matafora V, Parise F, Razzini G, Bachi A, Ferrari S, Molinari S. Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells. Nucleic Acids Res 2008; 36: 915–28.Google Scholar

  • 122.

    Ma K, Chan JK, Zhu G, Wu Z. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 2005; 25: 3575–82.Google Scholar

  • 123.

    Muñoz JP, Collao A, Chiong M, Maldonado C, Adasme T, Carrasco L, Ocaranza P, Bravo R, Gonzalez L, Díaz-Araya G, Hidalgo C, Lavandero S. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling. Biochem Biophys Res Commun 2009; 388: 155–160.Google Scholar

  • 124.

    Molkentin JD, Markham BE. Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 1993; 268: 19512–20.Google Scholar

  • 125.

    Nemoto S, Sheng Z, Lin A. Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol Cell Biol 1998; 18: 3518–26.Google Scholar

  • 126.

    Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J 2001; 20: 2757–67.Google Scholar

  • 127.

    Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998; 93: 215–28.Google Scholar

  • 128.

    Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380: 297–309.Google Scholar

  • 129.

    Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997; 88: 435–7.Google Scholar

  • 130.

    Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 2001; 21: 952–65.Google Scholar

  • 131.

    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–68.Google Scholar

  • 132.

    Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 2005; 102: 1649–54.Google Scholar

  • 133.

    Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, Huang H, Kuo HP, Lee DF, Li LY, Lien HC, Cheng X, Chang KJ, Hsiao CD, Tsai FJ, Tsai CH, Sahin AA, Muller WJ, Mills GB, Yu D, Hortobagyi GN, Hung MC. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 2008; 10: 138–48.Google Scholar

  • 134.

    Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004; 117: 225–37.Google Scholar

  • 135.

    Perrot V, Rechler MM. The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 2005; 19: 2283–98.Google Scholar

  • 136.

    Singh A, Yen M, Bucur O, Zhu S, Tanya Santos M, Rabinovitz I, Wei W, Gao D, Hahn WC, Khosravi-Far R. Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT. Mol Biol Cell 2010; 21: 1140–52.Google Scholar

  • 137.

    Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villén J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006; 125: 987–1001.Google Scholar

  • 138.

    Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya Y, Fukamizu A. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 2008; 32: 221–31.Google Scholar

  • 139.

    Sunayama J, Tsuruta F, Masuyama N, Gotoh Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol 2005; 170: 295–304.Google Scholar

  • 140.

    Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008; 283: 16283–92.Google Scholar

  • 141.

    Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12: 665–75.Google Scholar

  • 142.

    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119: 2758–71.Google Scholar

  • 143.

    Reed SA, Sandesara PB, Senf SM, Judge AR. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 2012; 26: 987–1000.Google Scholar

  • 144.

    Xu J, Li R, Workeneh B, Dong Y, Wang X, Hu Z. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int 2012; 82: 401–11.Google Scholar

  • 145.

    Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Dérijard B. Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol 2010; 30: 470–80.Google Scholar

  • 146.

    Hariharan N, Ikeda Y, Hong C, Alcendor RR, Usui S, Gao S, Maejima Y, Sadoshima J. Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. PLoS One 2013; 8: e51632.Google Scholar

  • 147.

    Ni YG, Berenji K, Wang N, Oh M, Sachan N, Dey A, Cheng J, Lu G, Morris DJ, Castrillon DH, Gerard RD, Rothermel BA, Hill JA. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 2006; 114: 1159–68.Google Scholar

  • 148.

    Storey KB, Storey JM. Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc 2004; 79: 207–33.Google Scholar

  • 149.

    Storey KB, Storey JM. Metabolic rate depression: the biochemistry of mammalian hibernation. Adv Clin Chem 2010; 52: 77–108.Google Scholar

  • 150.

    Storey KB, Storey JM. Putting life on ‘pause’ – molecular regulation of hypometabolism. J Exp Biol 2007; 210: 1700–14.Google Scholar

  • 151.

    Storey KB, Storey JM. Facultative metabolic rate depression: molecular regulation and biochemical adaptation in anaerobiosis, hibernation, and estivation. Quart Rev Biol 1990; 65: 145–74.Google Scholar

  • 152.

    Wu CW, Bell RA, Storey KB. Post-translational regulation of PTEN catalytic function and protein stability in the hibernating 13-lined ground squirrel. Biochim Biophys Acta 2015; 1850: 2196–202.Google Scholar

  • 153.

    Storey KB. Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 1996; 29: 1715–33.Google Scholar

  • 154.

    Storey KB. Natural hypothermic preservation: the mammalian hibernator. Cell Preserv Technol 2002; 1: 3–16.Google Scholar

  • 155.

    Fahlman A, Storey JM, Storey KB. Gene up-regulation in heart during mammalian hibernation. Cryobiology 2000; 40: 332–42.Google Scholar

  • 156.

    Hittel D, Storey KB. Differential expression of adipose and heart type fatty acid binding proteins in hibernating ground squirrels. Biochim Biophys Acta 2001; 1522: 238–43.Google Scholar

  • 157.

    Morin P, Storey KB. Cloning and expression of hypoxia-inducible factor 1α from the hibernating ground squirrel, Spermophilus tridecemlineatus. Biochim Biophys Acta 2005; 1729: 32–40.Google Scholar

  • 158.

    Mamady H, Storey KB. Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels. Mol Cell Biochem 2006; 292: 89–98.Google Scholar

  • 159.

    Eddy SF, Storey KB. p38MAPK regulation of transcription factor targets in muscle and heart of hibernating bats, Myotis lucifugus. Cell Biochem Function 2007; 25: 759–65.Google Scholar

  • 160.

    Morin P, Storey KB. Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 2006; 53: 310–8.Google Scholar

  • 161.

    Storey KB. Regulation of hypometabolism: insights into epigenetic controls. J Exp Biol 2015; 218: 150–9.Google Scholar

  • 162.

    Morin P, Dubuc A, Storey KB. Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor. Biochim Biophys Acta 2008; 1779: 628–33.Google Scholar

  • 163.

    Biggar K, Dubuc A, Storey KB. MicroRNA regulation below zero: differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs. Cryobiology 2009; 59: 317–21.Google Scholar

  • 164.

    Wang LCH, Lee TF. Torpor and hibernation in mammals: metabolic, physiological, and biochemical adaptations. In: Fregley MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology. New York: Oxford University Press, 1996: 507–32.Google Scholar

  • 165.

    Frerichs KU, Hallenbeck JM. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 1998; 18: 168–75.Google Scholar

  • 166.

    Martin SL. Mammalian hibernation: a naturally reversible model for insulin resistance in man? Diab Vasc Dis Res 2008; 5: 76–81.Google Scholar

  • 167.

    Buck CL, Barnes BM. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 2000; 279: R255–62.Google Scholar

  • 168.

    Bratincsák A, McMullen D, Miyake S, Tóth ZE, Hallenbeck JM, Palkovits M. Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel. J Comp Neurol 2007; 505: 443–58.Google Scholar

  • 169.

    Storey KB. Metabolic regulation in mammalian hibernation: enzyme and protein adaptations. Comp Biochem Physiol A 1997; 118: 1115–24.Google Scholar

  • 170.

    Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 2003; 83: 1153–81.Google Scholar

  • 171.

    Van Breukelen F, Martin SL. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J Appl Physiol 2002; 92: 2640–7.Google Scholar

  • 172.

    Shavlakadze T, Grounds M. Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Bioessays 2006; 28: 994–1009.Google Scholar

  • 173.

    Caiozzo VJ. Plasticity of skeletal muscle phenotype: mechanical consequences. Muscle Nerve 2002; 26: 740–68.Google Scholar

  • 174.

    Zuĭkova OV, Osipova DA, Vikhliantsev IM, Malyshev SL, Udal’tsov SN, Podlubnaia ZA. Myosin light chains of skeletal and cardiac muscles of ground squirrel Citillus undulatus in different periods of hibernation. Biofizika 2005; 50: 797–802.Google Scholar

  • 175.

    Choi H, Selpides PJ, Nowell MM, Rourke BC. Functional overload in ground squirrel plantaris muscle fails to induce myosin isoform shifts. Am J Physiol Regul Integr Comp Physiol 2009; 297: R578–86.Google Scholar

  • 176.

    Ivakine EA, Cohn RD. Maintaining skeletal muscle mass: lessons learned from hibernation. Exp Physiol 2014; 99: 632–7.Google Scholar

  • 177.

    Brauch KM, Dhruv ND, Hanse EA, Andrews MT. Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal. Physiol Genomics 2005; 23: 227–34.Google Scholar

  • 178.

    Tessier SN, Storey KB. Myocyte enhancer factor-2 and cardiac muscle gene expression during hibernation in thirteen-lined ground squirrels. Gene 2012; 501: 8–16.Google Scholar

  • 179.

    Heinis Fl, Vermillion KL, Andrews MT, Metzger JM. Myocardial performance and adaptive energy pathways in a torpid mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2015; 309: R368–77.Google Scholar

  • 180.

    Wang SQ, Lakatta EG, Cheng H, Zhou ZQ. Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol 2002; 205: 2957–62.Google Scholar

  • 181.

    Morin P Jr, Ni Z, McMullen DC, Storey KB. Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, Spermophilus tridecemlineatus. Mol Cell Biochem 2008; 312: 121–9.Google Scholar

  • 182.

    Ni Z, Storey KB. Heme oxygenase expression and Nrf2 signaling during hibernation in ground squirrels. Can J Physiol Pharmacol 2010; 88: 379–87.Google Scholar

  • 183.

    Allan ME, Storey KB. Expression of NF-κB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem Funct 2012; 30: 166–74.Google Scholar

  • 184.

    Vucetic M, Stancic A, Otasevic V, Jankovic A, Korac A, Markelic M, Velickovic K, Golic I, Buzadzic B, Storey KB, Korac B. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update. Free Radic Biol Med 2013; 65: 916–24.Google Scholar

  • 185.

    Tessier SN, Storey KB. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation. Mol Cell Biol 2010; 344: 151–62.Google Scholar

  • 186.

    Rourke BC, Yokoyama Y, Milsom WK, Caiozzo VJ. Myosin isoform expression and MAFbx mRNA levels in hibernating golden-mantled ground squirrels (Spermophilus lateralis). Physiol Biochem Zool 2004; 77: 582–93.Google Scholar

  • 187.

    Lee K, So H, Gwag T, Ju H, Lee JW, Yamashita M, Choi I. Molecular mechanism underlying muscle mass retention in hibernating bats: role of periodic arousal. J Cell Physiol 2010; 222: 313–9.Google Scholar

  • 188.

    Andres-Mateos E, Brinkmeier H, Burks TN, Mejias R, Files DC, Steinberger M, Soleimani A, Marx R, Simmers JL, Lin B, Finanger Hedderick E, Marr TG, Lin BM, Hourdé C, Leinwand LA, Kuhl D, Föller M, Vogelsang S, Hernandez-Diaz I, Vaughan DK, Alvarez de la Rosa D, Lang F, Cohn RD. Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol Med 2013; 5: 80–91.Google Scholar

  • 189.

    Luu BE, Tessier SN, Duford DL, Storey KB. The regulation of troponins I, C and ANP by GATA4 and Nkx2-5 in heart of hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PLoS One 2015; 10: e0117747.Google Scholar

  • 190.

    Brooks NE, Myburgh KH, Storey KB. Muscle satellite cells increase during hibernation in ground squirrels. Comp Biochem Physiol B Biochem Mol Biol 2015; 189: 55–61.Google Scholar

  • 191.

    Rouble AN, Storey KB. Characterization of the SIRT family of NAD(+)-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel. Cryobioloby 2015; 71: 334–43.Google Scholar

  • 192.

    Harlow HJ, Lohuis T, Beck TD, Iaizzo PA. Muscle strength in overwintering bears. Nature 2001; 409: 997.Google Scholar

  • 193.

    Tinker DB, Harlow HJ, Beck TD. Protein use and muscle-fiber changes in free-ranging, hibernating black bears. Physiol Zool 1998; 71: 414–24.Google Scholar

  • 194.

    Rourke BC. Myosin isoform dynamics in muscles of hibernating mammal species: lessons and opportunities. In: Lovegrove BG, McKechnie AE, editors. Hypometabolism in animals: hibernation, torpor and cryobiology. South Africa: University of KwaZula-Natal, 2008, 57–64.Google Scholar

  • 195.

    Hershey JD, Robbins CT, Nelson OL, Lin DC. Minimal seasonal alterations in the skeletal muscle of captive brown bears. Physiol Biochem Zool 2008; 81: 138–47.Google Scholar

  • 196.

    Morano I, Adler K, Agostini B, Hasselbach W. Expression of myosin heavy and light chains and phosphorylation of the phosphorylatable myosin light chain in the heart ventricle of the European hamster during hibernation and in summer. J Musc Res Cell Motil 1992; 13: 64–70.Google Scholar

  • 197.

    Alvarado S, Mak T, Liu S, Storey KB, Szyf M. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus. K Exp Biol 2015; 218: 1787–95.Google Scholar

  • 198.

    Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS. Expression of CD34 andMyf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 2000; 151: 1221–34.Google Scholar

  • 199.

    Andreas-Mateos E, Mejias R, Soleimani A, Lin BM, Burks TN, Marx R, Lin B, Zellars RC, Zhang Y, Huso DL, Marr TG, Leinwand LA, Merriman DK, Cohn RD. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels. PLoS One 2012; 7: e48884.Google Scholar

  • 200.

    Wu CW, Storey KB. Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels. J Exp Biol 2012; 215: 1720–7.Google Scholar

  • 201.

    Nelson CJ, Otis JF, Carey HV. A role for nuclear receptors in mammalian hibernation. J Physiol 2009; 587: 1863–70.Google Scholar

About the article

Corresponding author: Kenneth B. Storey, Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada, e-mail:


Received: 2015-11-20

Accepted: 2016-01-21

Published Online: 2016-03-16

Published in Print: 2016-05-01


Citation Information: Biomolecular Concepts, ISSN (Online) 1868-503X, ISSN (Print) 1868-5021, DOI: https://doi.org/10.1515/bmc-2015-0031.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in