Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomolecular Concepts

Editor-in-Chief: Jollès, Pierre / Mansuy, Isabelle

Editorial Board Member: Avila, Jesus / Bonetto, Valentina / Cera, Enrico / Jorgensen, Erik / Jörnvall, Hans / Lagasse, Eric / Norman, Robert / Pinna, Lorenzo / Raghavan, K. Vijay / Venetianer, Pal / Wahli, Walter

6 Issues per year

CiteScore 2016: 2.39

SCImago Journal Rank (SJR) 2016: 0.753
Source Normalized Impact per Paper (SNIP) 2016: 0.567

See all formats and pricing
More options …

The clear and dark sides of water: influence on the coiled coil folding domain

Tamás Vajda
  • Corresponding author
  • MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University and Laboratory of Structural Chemistry and Biology, Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ András Perczel
  • MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-02 | DOI: https://doi.org/10.1515/bmc-2016-0005


The essential role of water in extra- and intracellular coiled coil structures of proteins is critically evaluated, and the different protein types incorporating coiled coil units are overviewed. The following subjects are discussed: i) influence of water on the formation and degradation of the coiled coil domain together with the stability of this conformer type; ii) the water’s paradox iii) design of coiled coil motifs and iv) expert opinion and outlook is presented. The clear and dark sides refer to the positive and negative aspects of the water molecule, as it may enhance or inhibit a given folding event. This duplicity can be symbolized by the Roman ‘Janus-face’ which means that water may facilitate and stimulate coiled coil structure formation, however, it may contribute to the fatal processes of oligomerization and amyloidosis of the very same polypeptide chain.

Keywords: coiled coil folding; degradation; influence of water; molecular design; stability


  • 1.

    Chaplin MF. Opinion: do we underestimate the importance of water in cell biology? Nature Rev Mol Cell Biol 2006; 7: 861–6.Google Scholar

  • 2.

    Frauenfelder H, Fenimore PW, Chen G, McMahon BH. Protein folding is slaved to solvent motions. Proc Natl Acad Sci USA 2006; 103: 15469–72.Google Scholar

  • 3.

    Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH, Stroe IR, Swenson J, Young RD. A unified model of protein dynamics. Proc Natl Acad Sci USA 2009; 106: 5129–34.Google Scholar

  • 4.

    Fenimore PW, Frauenfelder H, Magazú S, McMahon BH, Mezei F, Migliardo F, Young RD, Stroe I. Concepts and problems in protein dynamics. Chem Phys 2013; 424: 2–6.Google Scholar

  • 5.

    Tutorial Review. Fogarty CA, Doboué-Dijon E, Sterpone F, Hynes TJ, Laage D. Biomolecular hydration dynamics: a jump model perspective. Chem Soc Rev 2013; 42: 5672–83.Google Scholar

  • 6.

    Review. Vajda T, Perczel A. Role of water in protein folding, oligomerization, amyloidosis and miniprotein. J Pept Sci 2014; 20: 747–59.Google Scholar

  • 7.

    Review. Gáspári Z, Nyitray L. Coiled coils as possible models of protein structure evolution. BioMol Concepts 2011; 2: 199–210.Google Scholar

  • 8.

    Pálfy VK, Perczel A. Stability of the hydration layer of tropocollagen: a QM study. J Comput Chem 2010; 31: 764–77.Google Scholar

  • 9.

    Mason JM, Arndt KM. Coiled coil domains: stability, specificity, and biological implications. Chem BioChem 2004; 5: 170–76.Google Scholar

  • 10.

    Moutevelis E, Woolfson DN. A periodic table of coiled-coil protein structures. J Mol Biol 2009; 385: 726–32.Google Scholar

  • 11.

    Dolenc J, Baron R, Missimer JH, Steinmetz MO, van Gunsteren WF. Exploring the conserved water site and hydration of a coiled-coil trimerization motif: A MD simulation study. Chem BioChem 2008; 9: 1749–56.Google Scholar

  • 12.

    Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1983; 157: 105–37.Google Scholar

  • 13.

    Bodkin MJ, Goodfellow JM. Competing interactions contributing to alpha-helical stability in aqueous solution. Protein Sci 1995; 4: 603–12.Google Scholar

  • 14.

    Süveges D, Gáspári Z, Tóth G, Nyitray L. Charged single α-helix: a versatile protein structural motif. Proteins 2009; 74: 905–16.Web of ScienceGoogle Scholar

  • 15.

    Gáspári Z, Süveges D, Perczel A, Nyitray L, Tóth G. Charged single alpha-helices in proteomes revealed by a prediction approach. Biochim Biophys Acta 2012; 1824: 637–46.Google Scholar

  • 16.

    Kinoshita M. Importance of translational entropy of water in biological self-assembly processes like protein folding. Int J Mol Sci 2009; 10: 1064–80.Web of ScienceGoogle Scholar

  • 17.

    Balakrishnan G, Hu Y, Case MA, Spiro TG. Microsecond melting of a folding intermediate in a coiled-coil peptide, monitored by T-jump/UV Raman spectroscopy. J Phys Chem B 2006; 110: 19877–83.Google Scholar

  • 18.

    Orzechowski M, Cieplak P, Piela LJ. Theoretical calculation of the coiled-coil stability in water in the context of its possible use as a molecular rack. Comput Chem 2002; 23: 106–10.Google Scholar

  • 19.

    Zhou Nian E, Kay CM, Hodges RS. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability. Protein Eng 1994; 7: 1365–72.Google Scholar

  • 20.

    Kwok SC, Hodges RS. Stabilizing and destabilizing clusters in the hydrophobic core of long two-stranded α-helical coiled coils. J Biol Chem 2004; 279: 21576–88.Google Scholar

  • 21.

    Lu SM, Hodges RS. Defining the minimum size of a hydrophobic cluster in two-stranded α-helical coiled-coils: effects on protein stability. Prot Sci 2004; 13: 714–26.Google Scholar

  • 22.

    Burghard P, Kammerer RA, Steinmetz MO, Bourenkov GP, Aebi U. The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges. Structure 2000; 8: 223–30.Google Scholar

  • 23.

    Hamed E, Keten S. Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping. Biophys J 2014; 107: 477–84.Web of ScienceGoogle Scholar

  • 24.

    Piana S, Laio A. A bias-exchange approach to protein folding. J Phys Chem B 2007; 111: 4553–59.Google Scholar

  • 25.

    Boice JA, Dieckmann GR, DeGrado WF, Fairman R. Thermodynamic analysis of a designed three-stranded coiled-coil. Biochem 1996; 35: 14480–85.Google Scholar

  • 26.

    Schulz E, Frechero M, Appignanesi G, Fernandez A. Sub-nanoscale surface ruggedness provides a watertight seal for exposed regions in soluble protein structure. PLoS One 2010; 5: e12844.Google Scholar

  • 27.

    Apostolovic B, Danial M, Klok H-A. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 2010; 39: 3541–75.Web of ScienceGoogle Scholar

  • 28.

    Fletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N, Miles MJ, Sessions RB, Verkade P, Woolfson DN. Self-assembling cages from coiled-coil peptide modules. Science 2013; 340: 595–9.Web of ScienceGoogle Scholar

  • 29.

    Aronsson C, Dånmark S, Zhou F, Öberg P, Enander K, Su H, Aili D. Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties. Biophys Chem 2015; doi: 10.1038/srep14063.CrossrefGoogle Scholar

  • 30.

    Gáspári Z. Is five percent too small? Analysis of the overlaps between disorder, coiled coil and collagen predictions in complete proteomes. Proteomes 2014; 2: 72–83.Google Scholar

  • 31.

    Behrens C, Binotti B, Schmidt C, Robinson CV, Chua JJE, Kühnel K. Crystal structure of the human short coiled coil protein and insights into SCOC-FEZI complex formation. PLoS One 2013; 8: e76355.Google Scholar

  • 32.

    Ellis RJ, Minton AP. Cell biology: join the crowd. Nature 2003; 425: 27–8.Google Scholar

  • 33.

    Sivaramakrishnan S, Spudich JA. Systematic control of protein interaction using a modular ER/K α-helix linker. Proc Natl Acad Sci USA 2011; 108: 20467–472.Google Scholar

  • 34.

    Tory K, Menyhárd DK, Woerner S, Nevo F, Gribouval O, Kerti A, Stráner P, Arrondel C, Cong EH, Tulassay T, Mollet G, Perczel A, Antignac C. Mutation-dependent recessive inheritance of NPHS2 – associated steroid-resistant nephrotic syndrome. Nat Genet 2014; 46: 299–304.Google Scholar

About the article

Received: 2016-02-16

Accepted: 2016-03-29

Published Online: 2016-07-02

Published in Print: 2016-06-01

Citation Information: Biomolecular Concepts, ISSN (Online) 1868-503X, ISSN (Print) 1868-5021, DOI: https://doi.org/10.1515/bmc-2016-0005.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in