Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 57, Issue 6

Issues

Volume 57 (2012)

Development of a neurotechnological system for relieving phantom limb pain using transverse intrafascicular electrodes (TIME)

Thomas Stieglitz
  • Corresponding author
  • Laboratory for Biomedical Microtechnology, IMTEK-Department of Microsystems Engineering and Bernstein Center Freiburg, University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tim Boretius
  • Laboratory for Biomedical Microtechnology, IMTEK-Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xavier Navarro
  • Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jordi Badia
  • Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Guiraud
  • Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier, Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean-Louis Divoux / Silvestro Micera / Paolo Maria Rossini / Ken Yoshida
  • Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kristian R. Harreby
  • Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aritra Kundu
  • Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Winnie Jensen
  • Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-10-05 | DOI: https://doi.org/10.1515/bmt-2011-0140

Abstract

Phantom limb pain (PLP) is a chronic condition that develops in the majority of amputees. The underlying mechanisms are not completely understood, and thus, no treatment is fully effective. Based on recent studies, we hypothesize that electrical stimulation of afferent nerves might alleviate PLP by giving sensory input to the patient if nerve fibers can be activated selectively. The critical component in this scheme is the implantable electrode structure. We present a review of a novel electrode concept to distribute highly selective electrode contacts over the complete cross section of a peripheral nerve to create a distributed activation of small nerve fiber ensembles at the fascicular level, the transverse intrafascicular multichannel nerve electrode (TIME). The acute and chronic implantations in a small animal model exhibited a good surface and structural biocompatibility as well as excellent selectivity. Implantation studies on large animal models that are closer to human nerve size and anatomical complexity have also been conducted. They proved implant stability and the ability to selectively activate nerve fascicles in a limited proximity to the implant. These encouraging results have opened the way forward for human clinical trials in amputees to investigate the effect of selective electrical stimulation on PLP.

Keywords: amputation; electrical stimulation; microsystem; nerve; neural prosthesis

References

  • [1]

    Andreu D, Guiraud D, Souquet G. A distributed architecture for activating the peripheral nervous system. J Neural Eng 2009; 6; 026001.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [2]

    Badia J, Pascual-Font A, Vivó M, Udina E, Navarro X. Topographical distribution of motor fascicles in the sciatic and tibial nerve of the rat. Muscle Nerve 2010; 42: 192–201.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [3]

    Badia J, Boretius T, Andreu A, Azevedo-Coste C, Stieglitz T, Navarro X. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolarcuff electrodes for the selective stimulation of nerve fascicles. J Neural Eng 2011; 8; 036023.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [4]

    Badia J, Boretius T, Udina E, Stieglitz T, Navarro X. Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. IEEE Trans Biomed Eng 2011; 58: 2324–2332.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    Boretius T, Badia J, Pascual-Font A, et al. A transversal intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 2010; 26: 62–69.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Boretius T, Yoshida K, Badia J, et al. A transverse intrafascicular multichannel electrode (TIME) to treat phantom limb pain: towards human clinical trials. Proc. of the IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob, Rome, Italy, 2012: 282–287.Google Scholar

  • [7]

    Calford MB, Tweedale R. C-fibres provide a source of masking inhibition to primary somatosensory cortex. Proc Biol Sci 1991; 243: 269–275.Google Scholar

  • [8]

    Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch Phys Med Rehabil 2005; 86: 1910–1919.CrossrefPubMedGoogle Scholar

  • [9]

    Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995; 375: 482–484.Google Scholar

  • [10]

    Flor H, Dencke C, Schaefer M, Grusser SM. Effect of sensory discrimination training on cortical reorganization and phantom limb pain. Lancet 2001; 357: 1763–1764.Google Scholar

  • [11]

    Flor H, Elbert T, Muhlnickel W, Pantev C, Wienbruch C, Taub E. Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res 1998; 119: 205–212.Google Scholar

  • [12]

    Ghionzoli A, Genovese V, Bossi S, Stefanini C, Micera S. Preliminary results on the design of a tool for inserting of transverse intrafascicular multichannel electrodes (TIME) into the peripheral nervous system. Conf Proc IEEE Eng Med Biol Soc 2011; 2011; 7634–7638.PubMedGoogle Scholar

  • [13]

    Flor H, Nikolajsen L, Jensen TS. Phantom limb pain: a case of maladaptive CNS plasticity. Neuroscience 2006; 7: 873–881.Google Scholar

  • [14]

    Grusser SM, Winter C, Muhlnickel W, et al. The relationship of perceptual phenomena and cortical reorganization in upper extremity amputees. Neuroscience 2001; 102: 263–272.CrossrefPubMedGoogle Scholar

  • [15]

    Guiraud D. Interfacing the neural system to restore deficient functions: from theoretical studies to neuroprothesis design. C R Biol 2012; 335: 1–8.Web of ScienceGoogle Scholar

  • [16]

    Harreby KR, Kundu A, Boretius T, Stieglitz T, Yoshida K, Jensen W. Evaluation of the stimulation selectivity of transverse intrafascicular multichannel electrodes in the chronic Göttingen mini-pig – preliminary results. Soc Neurosci 2011; in press.Google Scholar

  • [17]

    Hassler C, Boretius T, Stieglitz T. Polymers for neural implants. J Polym Sci B Polym Phys 2011; 49: 18–33. Erratum in J Polym Sci B Polym Phys 2011; 49: 255.CrossrefGoogle Scholar

  • [18]

    Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 2011; 19: 483–489.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [19]

    Hunter JP, Katz J, David KD. The effect of tactile and visual sensory inputs on phantom limb awareness. Brain 2003; 126: 579–589.Google Scholar

  • [20]

    Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guíc-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 1990; 63: 82–104.PubMedGoogle Scholar

  • [21]

    Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 2001; 21: 3609–3618.PubMedGoogle Scholar

  • [22]

    Karl A, Muhlnickel W, Kurth R, Flor H. Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 2004; 110: 90–102.CrossrefPubMedGoogle Scholar

  • [23]

    Kundu A, Jensen W, Kurstjens M, Stieglitz T, Boretius T, Yoshida K. Dependence of implantation angle of the transverse, intrafascicular electrode (TIME) on selective activation of pig forelimb muscles. Proceedings of the 10th Vienna Workshop on Functional Electrical Stimulation, 15th Annual International Conference of the International Functional Electrical Stimulation Society, Vienna, Austria, 2010; 315–317.Google Scholar

  • [24]

    Kundu A, Harreby KR, Boretius T, Stieglitz T, Yoshida K, Jensen W. Comparison of acute stimulation selectivity of transverse and longitudinal intrafascicular electrodes in pigs. Soc Neurosci 2011; in press.Google Scholar

  • [25]

    Lotze M, Grodd W, Birbaumer N, Erb M, Huse E, Flor H. Does use of a myoelectric prosthesis reduce cortical reorganization and phantom limb pain? Nat Neurosci 1999; 2: 501–502.CrossrefGoogle Scholar

  • [26]

    Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N. Phantom movements and pain. An fMRI study in upper limb amputees. Brain 2001; 124: 2268–2277.Google Scholar

  • [27]

    Micera S, Navarro X, Carpaneto J, et al. On the use of longitudinal intrafascicular peripheral interfaces for the control of cybernetic hand prostheses in amputees. IEEE Trans Neural Syst Rehabil Eng 2008; 16: 453–472.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [28]

    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 2005; 10: 229–258.CrossrefPubMedGoogle Scholar

  • [29]

    Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82: 163–201.Web of ScienceCrossrefPubMedGoogle Scholar

  • [30]

    Raspopovic S, Capogrosso M, Micera S. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans Neural Syst Rehabil Eng 2011; 19: 333–344.Web of SciencePubMedCrossrefGoogle Scholar

  • [31]

    Spitzer M, Böhler P, Weisbrod M, Kischka U. A neural network model of phantom limbs. Biol Cybern 1995; 72: 197–206.CrossrefPubMedGoogle Scholar

  • [32]

    Stieglitz T, Koch KP, Schuettler M. Flexible, polyimide- based modular implantable biomedical microsystems for neural prostheses. IEEE Eng Med Biol 2005; 24: 58–65.CrossrefGoogle Scholar

  • [33]

    Stieglitz T, Schuettler M, Rubehn B, Boretius T, Badia J, Navarro X. Evaluation of polyimide as substrate material for electrodes to interface the peripheral nervous system. Proceedings of the IEEE-EMBS Neural Engineering Conference, Cancun, Mexico, April 27 to May 1, 2011: 529–533.Google Scholar

  • [34]

    Tecchio F, Padua L, Aprile I, Rossini PM. Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapp 2002; 17: 28–36.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Thomas Stieglitz, Laboratory for Biomedical Microtechnology, IMTEK-Department of Microsystems Engineering and Bernstein Center Freiburg, University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg, Germany, Phone: +49 761 203 7471, Fax: +49 761 203 7472


Received: 2012-04-24

Accepted: 2012-09-03

Published Online: 2012-10-05

Published in Print: 2012-12-01


Citation Information: Biomedizinische Technik/Biomedical Engineering, Volume 57, Issue 6, Pages 457–465, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2011-0140.

Export Citation

©2012 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Danesh Ashouri Vajari, Maria Vomero, Johannes Erhardt, Ali Sadr, Juan Ordonez, Volker Coenen, and Thomas Stieglitz
Micromachines, 2018, Volume 9, Number 10, Page 510
[2]
Marjorie Flahaut, Nicolas L Laurent, Murielle Michetti, Nathalie Hirt-Burri, Winnie Jensen, Romulus Lontis, Lee A Applegate, and Wassim Raffoul
Pain Management, 2018
[3]
Gehua Zhen, Huanwen Chen, Shin-Yi Tsai, Jian Zhang, Tongyi Chen, and Xiaofeng Jia
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018

Comments (0)

Please log in or register to comment.
Log in