Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 58, Issue 2

Issues

Volume 57 (2012)

Integrating strength tests of amputees within the protocol of conventional clinical gait analysis: a novel approach

Daniel W.W. Heitzmann
  • Corresponding author
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Guenther / Benjamin Becher
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Merkur Alimusaj
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia Block
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan van Drongelen
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Dreher
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Braatz
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian I. Wolf
  • Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-02 | DOI: https://doi.org/10.1515/bmt-2012-0036

Abstract

Clinical experience tells us that the lower-limb amputees are one of the patient groups who clearly suffer from a strength deficit in their involved side. However, there is no obvious evidence for the relation between the residual limb strength and walking ability in this population. Correlating the results of the conventional clinical gait analysis (CGA) with strength tests could help to find out how deficits in strength impact the amputees’ gait. In this contribution, a new device for measuring the isometric muscle strength of the hip and the knee was tested for feasibility. Three groups were tested: one group of 11 healthy subjects (29±5 years) to test the repeatability of the device, two unilateral amputees (one transfemoral for 56 years, one transtibial for 65 years), and a reference group of 17 healthy subjects (55±10 years). The new method presents an adequate technique to integrate strength testing within a standard protocol of the CGA. Results showed to be repeatable within sessions [i.e., within-day, intraclass correlation coefficient (ICC)>0.972] and between repeated measurements (i.e., day-to-day, ICC>0.765). The tested amputees showed clear deficits in maximum isometric joint moments in their most distal joint. The first results suggest evidence for a relation between the maximum isometric joint moments and gait deviations in amputees.

Keywords: amputee; gait analysis; gait deviations; isometric; strength

References

  • [1]

    Becher B. Herstellung der Messeinrichtung HipTor zur Bestimmung des Drehmoments der Hüfte nach transfemoraler Amputation, unpublished diploma thesis. Germany: University of Applied Science Giessen 2008.Google Scholar

  • [2]

    Blumentritt S, Schmalz T, Jarasch R. Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation. Orthopade 2001; 30: 161–168.PubMedCrossrefGoogle Scholar

  • [3]

    Burnfield JM, Josephson KR, Powers CM, Rubenstein LZ. The influence of lower extremity joint torque on gait characteristics in elderly men. Arch Phys Med Rehabil 2001; 81: 1153–1157.Google Scholar

  • [4]

    Dallmeijer AJ, Baker R, Dodd KJ, Taylor NF. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy. Gait Posture 2010; 81: 1153–1157.Web of ScienceGoogle Scholar

  • [5]

    Dvir Z. Clinical applicability of isokinetics: a review. Clin Biomech 1991; 6: 133–144.CrossrefGoogle Scholar

  • [6]

    Eek MN, Beckung E. Walking ability is related to muscle strength in children with cerebral palsy. Gait Posture 2008; 28: 366–371.PubMedCrossrefGoogle Scholar

  • [7]

    Flansbjer UB, Lexell J. Reliability of knee extensor and flexor muscle strength measurements in persons with late effects of polio. J Rehabil Med 2010; 42: 588–592.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [8]

    Fosang A, Baker R. A method for comparing manual muscle strength measurements with joint moments during walking. Gait Posture 2006; 24: 406–411.PubMedCrossrefGoogle Scholar

  • [9]

    Gailey RS, Roach KE, Applegate EB, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil 2002; 83: 613–627.Google Scholar

  • [10]

    Guenther M. Hueftdrehmoment nach transfemoraler Amputation, unpublished diploma thesis. Germany: University of Applied Science Giessen 2008.Google Scholar

  • [11]

    Hartmann A, Knols R, Murer K, de Bruin ED. Reproducibility of an isokinetic strength-testing protocol of the knee and ankle in older adults. Gerontology 2009; 55: 259–268.Web of ScienceCrossrefGoogle Scholar

  • [12]

    Heitzmann D, Guenther M, Wolf SI, Alimusaj M, Braatz F. Strength deficits in trans-tibial amputees. Gait Posture 2009; 30: S43.CrossrefGoogle Scholar

  • [13]

    Hettinger T. Maximal rotation power of the hip joint in upper and lower leg amputees, as compared with persons with normal legs. Z Orthop Ihre Grenzgeb 1959; 91: 131–140.Google Scholar

  • [14]

    Isakov E, Burger H, Gregorič M, Marinček C. Isokinetic and isometric strength of the thigh muscles in below-knee amputees. Clin Biomech (Bristol, Avon) 1996; 11: 232–235.Google Scholar

  • [15]

    Jaegers SM, Arendzen JH, de Jongh HJ. Changes in hip muscles after above-knee amputation. Clin Orthop Relat Res 1995; 319: 276–284.Google Scholar

  • [16]

    Jaegers SM, Arendzen JH, de Jongh HJ. Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil 1995; 76: 736–743.CrossrefGoogle Scholar

  • [17]

    Jaegers SM, Arendzen JH, de Jongh HJ. An electromyographic study of the hip muscles of transfemoral amputees in walking. Clin Orthop Relat Res 1996; 328: 119–128.CrossrefGoogle Scholar

  • [18]

    James U. Maximal isometric muscle strength in healthy active male unilateral above-knee amputees, with special regard to the hip joint. Scand J Rehabil Med 1973; 5: 55–66.PubMedGoogle Scholar

  • [19]

    Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res 1990; 8: 383–392.PubMedCrossrefGoogle Scholar

  • [20]

    Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 1989; 7: 849–860.PubMedCrossrefGoogle Scholar

  • [21]

    Kirtley C, Whittle MW, Jefferson RJ. Influence of walking speed on gait parameters. J Biomed Eng 1985; 7: 282–288.PubMedCrossrefGoogle Scholar

  • [22]

    Powers CM, Boyd LA, Fontaine CA, Perry J. The influence of lower-extremity muscle force on gait characteristics in individuals with below-knee amputations secondary to vascular disease. Phys Ther 1996; 76: 369–377.PubMedGoogle Scholar

  • [23]

    Schmalz T, Blumentritt S, Reimers CD. Selective thigh muscle atrophy in trans-tibial amputees: an ultrasonographic study. Arch Orthop Trauma Surg 2001; 121: 307–312.CrossrefGoogle Scholar

  • [24]

    Shrier I. Does stretching improve performance? A systematic and critical review of the literature. Clin J Sport Med 2004; 14: 267–273.PubMedCrossrefGoogle Scholar

  • [25]

    Sienko TS, Buckon CE, Nicorici A, Bagley A, McDonald CM, Sussman MD. Classification of the gait patterns of boys with Duchenne muscular dystrophy and their relationship to function. J Child Neurol 2010; 25: 1103–1109.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Sutherland DH, Olshen R, Cooper L, et al. The pathomechanics of gait in Duchenne muscular dystrophy. Dev Med Child Neurol 1981; 23: 3–22.Web of SciencePubMedGoogle Scholar

  • [27]

    Tsiros MD, Grimshaw PN, Schield AJ, Buckley JD. Test-retest reliability of the Biodex System 4 Isokinetic Dynamometer for knee strength assessment in paediatric populations. J Allied Health 2011; 40: 115–119.PubMedGoogle Scholar

  • [28]

    van Velzen JM, van Bennekom CA, Polomski W, Slootman JR, van der Woude LH, Houdijk H. Physical capacity and walking ability after lower limb amputation: a systematic review. Clin Rehabil 2006; 20: 999–1016.CrossrefGoogle Scholar

  • [29]

    Vicon, Plug-in-Gait modelling details. UK: Vicon, Oxford Metrics 2000.Google Scholar

  • [30]

    Winter DA, Sienko SE. Biomechanics of below-knee amputee gait. J Biomech 1988; 21: 361–367.PubMedCrossrefGoogle Scholar

  • [31]

    Yoon TS, Park DS, Kang SW, Chun SI, Shin JS. Isometric and isokinetic torque curves at the knee joint. Yonsei Med J 1991; 32: 33–43.PubMedGoogle Scholar

About the article

Corresponding author: Daniel W.W. Heitzmann, Department of Orthopedics and Trauma Surgery, Heidelberg University Clinics, 69118 Heidelberg, Germany, Phone: +496221 56 26720, Fax: +496221 56 26725


Received: 2012-07-04

Accepted: 2013-01-15

Published Online: 2013-03-02

Published in Print: 2013-04-01


Citation Information: Biomedizinische Technik/Biomedical Engineering, Volume 58, Issue 2, Pages 195–204, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2012-0036.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ruud A. Leijendekkers, Gerben van Hinte, Amy D. Sman, J. Bart Staal, Maria W. G. Nijhuis-van der Sanden, Thomas J. Hoogeboom, and Hagen Andruszkow
PLOS ONE, 2017, Volume 12, Number 6, Page e0179887

Comments (0)

Please log in or register to comment.
Log in