Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

See all formats and pricing
More options …
Volume 58, Issue 4


Volume 57 (2012)

In situ optical coherence tomography of percutaneous implant-tissue interfaces in a murine model

Sabine Donner
  • Corresponding author
  • Biomedical Optics Department, Laser Zentrum Hannover e.V., D-30419 Hannover, Germany
  • CrossBIT, Hannover Medical School, 30625 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Müller
  • Institute for Information Processing, Leibniz University of Hannover, D-30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Witte / Ivonne Bartsch
  • Department of Orthopaedics/CrossBIT, Hannover Medical School, 30625 Hannover, Germany
  • Currently affiliated with the Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, D-30625 Hannover, Germany.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elmar Willbold / Tammo Ripken / Alexander Heisterkamp
  • Institute of Applied Optics, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
  • To the time point of the study, affiliated with Biomedical Optics Department, Laser Zentrum Hannover e.V., D-30419 Hannover, Germany and also with CrossBIT, Hannover Medical School, 30625 Hannover, Germany.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bodo Rosenhahn
  • Institute for Information Processing, Leibniz University of Hannover, D-30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Krüger
  • Biomedical Optics Department, Laser Zentrum Hannover e.V., D-30419 Hannover, Germany
  • CrossBIT, Hannover Medical School, 30625 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-17 | DOI: https://doi.org/10.1515/bmt-2012-0044


Novel surface coatings of percutaneous implants need to be tested in biocompatibility studies. The use of animal models for testing usually involves numerous lethal biopsies for the analysis of the implant-tissue interface. In this study, optical coherence tomography (OCT) was used to monitor the reaction of the skin to a percutaneous implant in an animal model of hairless but immunocompetent mice. In vivo optical biopsies with OCT were taken at days 7 and 21 after implantation and post mortem on the day of noticeable inflammation. A Fourier-domain OCT was programmed for spoke pattern scanning schemes centered at the implant midpoint to reduce motion artifacts during in vivo imaging. Image segmentation allowed the automatic detection and morphometric analysis of the skin contour and the subcutaneous implant anchor. On the basis of the segmentation, the overall refractive index of the tissue within one OCT data set was estimated as a free parameter of a fitting algorithm, which corrects for the curved distortion of the planar implant base in the OCT images. OCT in combination with the spoke scanning scheme and image processing provided time-resolved three-dimensional optical biopsies around the implants to assess tissue morphology.

Keywords: in vivo; motion artifacts; refractive index; scanning scheme; segmentation


  • [1]

    Ballard DH. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit 1981; 13: 111–122.CrossrefGoogle Scholar

  • [2]

    Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979; 74: 829–836.CrossrefGoogle Scholar

  • [3]

    Fercher F, Hitzenberger K, Kamp G, El-Zaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Optics Commun 1995; 117: 43–48.CrossrefGoogle Scholar

  • [4]

    Gambichler T, Jaedicke V, Terras S. Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 2011; 303: 457–473. DOI:10.1007/s00403-011-1152-x.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [5]

    Gladkova ND, Petrova GA, Nikulin NK, et al. In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol 2000; 6: 6–16.PubMedCrossrefGoogle Scholar

  • [6]

    Heaney TG, Doherty PJ, Williams DF. Marsupialization of percutaneous implants in presence of deep connective tissue. J Biomed Mater Res 1996; 32: 593–601. DOI:gt;3.0.CO;2-F.Google Scholar

  • [7]

    Hori Y, Yasuno Y, Sakai S, et al. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography. Opt Express 2006; 14: 1862–1877.CrossrefPubMedGoogle Scholar

  • [8]

    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991; 254: 1178–1181.CrossrefPubMedGoogle Scholar

  • [9]

    Kang W, Wang H, Wang Z, et al. Motion artifacts associated with in vivo endoscopic OCT images of the esophagus. Optics Express 2011; 19: 898–905.Web of ScienceGoogle Scholar

  • [10]

    Kim E, Ehrmann K, Uhlhorn S, Borja D, Parel J-M. Automated analysis of OCT images of the crystalline lens. In: Manns F, Soderberg PG, Ho A, editors. Proc SPIE 7163, Ophthalmic technologies XIX 2009: 716313. DOI:10.1117/12.809986.CrossrefGoogle Scholar

  • [11]

    Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Optics Express 2011; 19: 3044–3062.PubMedCrossrefGoogle Scholar

  • [12]

    Li SZ. Markov random field modeling in image analysis, 3rd ed. London: Springer Publishing Company 2009.Google Scholar

  • [13]

    Liew YM, McLaughlin RA, Wood FM, Sampson DD. Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker. Biomed Optics Express 2012; 3: 1774–1786. DOI:10.1364/BOE.3.001774.Web of ScienceCrossrefGoogle Scholar

  • [14]

    Liew YM, McLaughlin RA, Wood FM, Sampson DD. Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo. J Biomed Optics 2011; 16: 116018. DOI:10.1117/1.3652710.CrossrefGoogle Scholar

  • [15]

    McLaughlin RA, Armstrong JJ, Becker S, et al. Respiratory gating of anatomical optical coherence tomography images of the human airway. Optics Express 2009; 17: 6568–6577.CrossrefPubMedGoogle Scholar

  • [16]

    McNabb RP, Larocca F, Farsiu S, Kuo AN, Izatt JA. Distributed scanning volumetric SDOCT for motion corrected corneal biometry. Biomed Optics Express 2012; 3: 2050–2065. DOI:10.1364/BOE.3.002050.Web of ScienceCrossrefGoogle Scholar

  • [17]

    Müller O, Donner S, Klinder T. Compensating motion artifacts of 3D in vivo SD-OCT scans. Med Image Comput Comput Assist Interv 2012; 7510: 198–205. DOI:10.1007/978-3-642-33415-3_25.CrossrefGoogle Scholar

  • [18]

    Müller O, Donner S, Klinder T, et al. Model based 3D segmentation and OCT image undistortion of percutaneous implants. In: 14th International conference on medical image computing and computer assisted intervention (MICCAI) 2011. Lecture notes in computer science, vol. 6893. Berlin: Springer 2011: 454–462.Google Scholar

  • [19]

    Pendegrass CJ, Goodship AE, Blunn GW. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. Biomaterials 2006; 27: 4183–4191. DOI:10.1016/j.biomaterials.2006.03.041.PubMedCrossrefGoogle Scholar

  • [20]

    Shin Y, Akao M. Tissue reactions to various percutaneous materials with different surface properties and structures. Artif Organs 1997; 21: 995–1001.PubMedGoogle Scholar

  • [21]

    Staubach K-H, Grundei H. The first osseointegrated percutaneous anchor for an exoprosthesis, for routine use in above-knee amputees. Biomed Technik 2001; 46: 355–361.CrossrefGoogle Scholar

  • [22]

    Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Hee MR, Fujimoto JG. Determination of the refractive index of highly scattering human tissue by optical coherence tomography. Opt Lett 1995; 20: 2258–2260.CrossrefPubMedGoogle Scholar

  • [23]

    Uhlhorn SR, Borja D, Manns F, Parel J-M. Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Vision Res 2008; 48: 2732–2738. DOI:10.1016/j.visres.2008.09.010.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [24]

    von Recum AF. Applications and failure modes of percutaneous devices: a review. J Biomed Mater Res 1984; 18: 323–336. DOI:10.1002/jbm.820180403.CrossrefGoogle Scholar

  • [25]

    Walther J, Krüger A, Cuevas M, Koch E. Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector. J Opt Soc Am A Optics Image Sci Vis 2008; 25: 2791–2802.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Weissman J, Hancewicz T, Kaplan P. Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt Express 2004; 12: 5760–5769.PubMedCrossrefGoogle Scholar

  • [27]

    Westphal V, Rollins A, Radhakrishnan S, Izatt J. Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle. Opt Express 2002; 10: 397–404.CrossrefGoogle Scholar

  • [28]

    Xie Y. A new efficient ellipse detection method. In: Kasturi R, Laurendeau D, Suen C, editors. International conference on pattern recognition 2002: 0–3.Google Scholar

  • [29]

    Yun SH, Tearney GJ, De Boer JF, Bouma BE. Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt Express 2004; 12: 2977–2998.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Sabine Donner, Biomedical Optics Department, Laser Zentrum Hannover e.V., D-30419 Hannover, Germany, Phone: +49 511 2788 325, Fax: +49 511 2788 100

Received: 2012-07-24

Accepted: 2013-04-12

Published Online: 2013-05-17

Published in Print: 2013-08-01

Citation Information: Biomedizinische Technik/Biomedical Engineering, Volume 58, Issue 4, Pages 359–367, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2012-0044.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in