Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Editor-in-Chief: Dössel, Olaf

Editorial Board Member: Augat, Peter / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2016: 0.915
5-year IMPACT FACTOR: 1.263

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 58, Issue 4 (Aug 2013)

Issues

Volume 57 (2012)

Kinetic energy scavenging in a prosthetic foot using a fluidic system

Christian Pylatiuk
  • Corresponding author
  • Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabian Metzger
  • Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roland Wiegand
  • Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Georg Bretthauer
  • Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-03 | DOI: https://doi.org/10.1515/bmt-2012-0092

Abstract

The use of active prostheses for the lower extremity is limited by the amount of electric energy stored in batteries. A promising way to extend their usage time is to convert motions generated by the human body during walking to electrical energy. A first functioning prototype was designed to transfer kinetic energy from heel contact and forefoot contact to a generator by using a fluidic system. Experimental results show that walking with the system generates an average electrical power of 0.8 W. The design of the energy scavenging system (ESS) is presented and results are discussed.

Keywords: biomechanics; body energy harvesting; fluidic system; foot prosthesis

References

  • [1]

    Andriacchi TP, Ogle JA, Galante JO. Walking speed as a basis for normal and abnormal gait measurements. J Biomech 1977; 10: 261–268.CrossrefPubMedGoogle Scholar

  • [2]

    Antaki JF, Bertocci GE, Green, et al. A gait-powered autologous battery charging system for artificial organs. ASAIO J 1995; 41: M596–M600.Google Scholar

  • [3]

    Duffy M, Carroll D. Electromagnetic generators for power harvesting. Proceedings of the IEEE Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004; Vol. 3: 2075–2081.Google Scholar

  • [4]

    Hayashida JY. Unobtrusive integration of magnetic generator systems into common footwear. Thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 2000.Google Scholar

  • [5]

    Herber A, Hanisch A, Gnoerrlich T, Laqua D, Husar P. Design of power management in energy harvesting devices. Biomed Tech 2012; 57 (Suppl 1): 251–254.Web of ScienceGoogle Scholar

  • [6]

    Kymissis J, Paradiso JA, Gershenfeld N, Kendall C. Parasitic power harvesting in shoes. Proceedings of the IEEE International Symposium on Wearable Computing, Pittsburgh, PA, USA, 19–20 October 1998; 132–139.Google Scholar

  • [7]

    Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD, Donelan JM. Biomechanical energy harvesting: Apparatus and method. Proceedings of the IEEE International Conference on Robotics and Automation 2008, Pasadena, CA, USA, 19–23 May; 3672–3677.Google Scholar

  • [8]

    Murray MP, Drought AB, Kory RC. Walking patterns of normal men. J Bone Joint Surg Am 1964;46: 335–360.PubMedGoogle Scholar

  • [9]

    Niu P, Chapman P. Design and performance of linear biomechanical energy conversion devices. Proceedings of the IEEE Power Electronics Specialists Conference, Jeju, South Korea, 18–22 June 2006Google Scholar

  • [10]

    Pechrach K, Manoonpong P, Woegoetter F, et al. Piezoelectric Energy Harvesting for Self Power Generation of Upper and Lower Prosthetic Legs. Proceedings of the Piezo 2011 Conference, Sestriere, Italy, February 28–March 2, 2011.Google Scholar

  • [11]

    Pelrine R, Kornbluh R, Eckerle, et al. Dielectric elastomer: generator mode fundamentals and applications. Smart Mater Struct 2001; 4329: 148–156.Google Scholar

  • [12]

    Riemer R, Shapiro A. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J Neuroeng Rehabil 2001; 8: 1–13.Web of ScienceGoogle Scholar

  • [13]

    Sasaki K, Osaki Y, Okazaki J, Hosaka H, Itao K. Vibration-based automatic power-generation system. Microsyst Technol 2005; 11: 965–969.CrossrefGoogle Scholar

  • [14]

    Shenck NS, Paradiso JA. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 2001; 21: 30–42.CrossrefGoogle Scholar

  • [15]

    Tashiro R, Kabei N, Katayama K, Ishizuka Y, Tsuboi F, Tsuchiya K. Development of an electrostatic generator that harnesses the motion of a living body. JSME Int J ser C 2000; 43: 916–922.CrossrefGoogle Scholar

  • [16]

    Wiegand R, Schmitz B, Schulz S. Lifetime of Flexible Fluidic Actuators of Reinforced Polyurethane Film. Proceedings of the IEEE International Conference on New Actuators – ACTUATOR, Bremen, Germany, 18–20 June 2012; 78.Google Scholar

  • [17]

    Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 1990; 70: 340–347.PubMedGoogle Scholar

  • [18]

    Yang W. Footwear energy harvesting system, Patent US 7,956,476 B2, 2011.Google Scholar

  • [19]

    Yohei C, Yasumichi K, Satoshi M, Takahisa M. Power system, Patent JP 2008141934 A, 2008.Google Scholar

  • [20]

    Zeng P, Khaligh A. A permanent magnet linear motion driven kinetic energy harvester. IEEE T Ind Electron 2012; 60: 5737–5746.Web of ScienceGoogle Scholar

About the article

Corresponding author: Christian Pylatiuk, Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Phone: +49-721-608-22430, Fax: +49-721-608-25786


Received: 2012-10-18

Accepted: 2013-07-15

Published Online: 2013-08-03

Published in Print: 2013-08-01


Citation Information: Biomedizinische Technik/Biomedical Engineering, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2012-0092.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in