Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 58, Issue 6

Issues

Volume 57 (2012)

Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers

Kerstin Lüdtke-Buzug / Julian Haegele
  • Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sven Biederer / Timo F. Sattel / Marlitt Erbe / Robert L. Duschka
  • Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörg Barkhausen
  • Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian M. Vogt
  • Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-20 | DOI: https://doi.org/10.1515/bmt-2012-0059

Abstract

Magnetic particle imaging (MPI) recently emerged as a new tomographic imaging method directly visualizing the amount and location of superparamagnetic iron oxide particles (SPIOs) with high spatial resolution. To fully exploit the imaging performance of MPI, specific requirements are demanded on the SPIOs. Most important, a sufficiently high number of detectable harmonics of the receive signal spectrum is required. In this study, an assessment of commercial iron oxide-based MRI contrast agents is carried out, and the result is compared with that of a new self-synthesized high-performance MPI tracer. The decay of the harmonics is measured with a magnetic particle spectrometer (MPS). For the self-synthesized carboxymethyldextran-coated SPIO, it can be demonstrated that despite a small iron core diameter, the particle performance is as good as in Resovist, the best-performing commercial SPIO today. However, the self-synthesized particles show the lowest iron concentration compared with Resovist, Sinerem, and Endorem. As the iron dose will be an important issue in human MPI, the synthesis technique and the separation chain for self-synthesis will be pursued for further improvements. In evaluations carried out with MPS, it can be shown in this work that the quality of the self-synthesized nanoparticles outperforms the three commercial tracer materials when the decay of harmonics is normalized by the iron concentration. The results of this work emphasize the importance of producing highly uniform and monodisperse superparamagnetic particles contributing to lower application of tracer concentration, better sensitivity, or a higher spatial resolution.

Keywords: iron oxide; magnetic particle imaging; magnetic particle spectroscopy; nanoparticles; SPIO

References

  • [1]

    Bellin MF, Roy C, Kinkel K, et al. Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles – initial clinical experience. Radiology 1998; 207: 799–808.PubMedGoogle Scholar

  • [2]

    Biederer S, Knopp T, Sattel TF, et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys D Appl Phys 2009; 42: 205007.CrossrefGoogle Scholar

  • [3]

    Chikazumi S, Charap S. Physics of magnetism. New York: Wiley 1964.Google Scholar

  • [4]

    Eberbeck D, Wiekhorst F, Wagner S, et al. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett 2011; 98: 182502. http://dx.doi.org/10.1063/1.3586776.CrossrefWeb of Science

  • [5]

    Erbe M, Sattel TF, Buzug TM. Improved magnetic particle spectrometer providing high field amplitudes for investigation of hysteresis effect in superparamagnetic nanoparticle tracers. World molecular imaging congress, Dublin, 2012.Google Scholar

  • [6]

    Ferguson RM, Minard KR, Khandhar AP, et al. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 2011; 38: 1619–1626.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [7]

    Fleige G, Nolte C, Synowitz M, et al. Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 2001; 3: 489–499.PubMedCrossrefGoogle Scholar

  • [8]

    Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214–1217.Google Scholar

  • [9]

    Gleich B, Weizenecker J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging. Phys Med Biol 2008; 53: N81–84.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Goodwill PW, Tamrazian A, Croft LR, et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. App Phys Lett 2011; 98: 262502. http://dx.doi.org/10.1063/1.3604009.Crossref

  • [11]

    Grüttner M, Gräser M, Biederer S, et al. 1D-image reconstruction for magnetic particle imaging using a hybrid system function. Proc IEEE Nuc Sci Symp Med Im Conf 2011: 2545–2548.Google Scholar

  • [12]

    Kalapis U, Lüdtke-Buzug K. Magnetic methods for separation and purification of superparamagnetic iron oxide nanoparticles. Biomed Tech 2011; 56(Suppl. 1). DOI 10.1515/BMT.2011.630.CrossrefGoogle Scholar

  • [13]

    Knopp T, Biederer S, Sattel T, et al. Trajectory analysis for magnetic particle imaging. Phys Med Biol 2009; 54: 385–397.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [14]

    Knopp T, Biederer S, Sattel TF, et al. 2D Model-based reconstruction for magnetic particle imaging. Med Phys 2010; 37: 485–491.PubMedCrossrefGoogle Scholar

  • [15]

    Knopp T, Sattel T, Biederer S, et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imag 2010; 29: 12–18.CrossrefGoogle Scholar

  • [16]

    Krishnan KM. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 2010; 46: 2523–2558.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [17]

    Lüdtke-Buzug K. Von der synthese zur klinischen anwendung: magnetische nanopartikel. Chem Unserer Zeit 2012; 46: 32–39.CrossrefGoogle Scholar

  • [18]

    Lüdtke-Buzug K, Biedere S, Sattel T, et al. Particle-size distribution of dextran- and carboxydextran-coated superparamagnetic nanoparticles for magnetic particle imaging. In: Doessel O, Schlegel WC, editors. World congress on medical physics and biomedical engineering, Springer IFMBE Series. Munich: Springer 2009: 226–229.Google Scholar

  • [19]

    Rahmer J, Weizenecker J, Gleich B, et al. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 2009; 9: 4. DOI:10.1186/1471-2342-9-4.CrossrefPubMedGoogle Scholar

  • [20]

    Rauwerdink AM, Weaver JB. Concurrent quantification of multiple nanoparticle bound states. Med Phys 2011; 38: 1136–1140.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [21]

    Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001; 103: 415–422.PubMedCrossrefGoogle Scholar

  • [22]

    Sattel T, Knopp T, Biederer S, et al. Single-sided device for magnetic particle imaging. J Phys D Appl Phys 2009; 42: 1–5.Google Scholar

  • [23]

    Schmale I, Rahmer J, Gleich B, Borgert J, Weizenecker J. Point spread function analysis of magnetic particle imaging. SPPHY 140, 2012: 287–292.Google Scholar

  • [24]

    Seneterre E, Weissleder R, Jaramillo D, et al. Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 1991; 179: 529–533.PubMedGoogle Scholar

  • [25]

    Snyder S, Heinen U. Characterization of magnetic nanoparticles for therapy and diagnostics. Ettlingen, Germany: Bruker BioSpin 2010.Google Scholar

  • [26]

    Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60: 1252–1265.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [27]

    Weaver JB, Rauwerdink AM, Sullivan CR, et al. Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field. Med Phys 2008; 35: 1988–1994.CrossrefPubMedGoogle Scholar

  • [28]

    Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 2007; 52: 6363–6374.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [29]

    Weizenecker J, Gleich B, Rahmer J, et al. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009; 54: L1–L10.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    Weissleder R, Hahn PF, Stark DD, et al. Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging. Radiology 1988; 169: 399–403.PubMedGoogle Scholar

  • [31]

    Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989; 152: 167–173.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Kerstin Lüdtke-Buzug, Institute of Medical Engineering, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany, E-mail:


Received: 2012-12-04

Accepted: 2013-05-28

Published Online: 2013-06-20

Published in Print: 2013-12-01


Citation Information: Biomedizinische Technik/Biomedical Engineering, Volume 58, Issue 6, Pages 527–533, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2012-0059.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
James Wells, Olga Kazakova, Oliver Posth, Uwe Steinhoff, Sarunas Petronis, Lara K Bogart, Paul Southern, Quentin Pankhurst, and Christer Johansson
Journal of Physics D: Applied Physics, 2017, Volume 50, Number 38, Page 383003
[2]
Bryan Ronain Smith and Sanjiv Sam Gambhir
Chemical Reviews, 2017, Volume 117, Number 3, Page 901
[3]
Antje Lindemann, Ralph Pries, Kerstin Ludtke-Buzug, and Barbara Wollenberg
IEEE Transactions on Magnetics, 2015, Volume 51, Number 2, Page 1
[4]
Klaas Bente, Matthias Weber, Matthias Graeser, Timo F. Sattel, Marlitt Erbe, and Thorsten M. Buzug
IEEE Transactions on Medical Imaging, 2015, Volume 34, Number 2, Page 644
[5]
M Graeser, K Bente, and T M Buzug
Journal of Physics D: Applied Physics, 2015, Volume 48, Number 27, Page 275001

Comments (0)

Please log in or register to comment.
Log in