Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 58, Issue 6

Issues

Volume 57 (2012)

Simulation of the magnetization dynamics of diluted ferrofluids in medical applications

Henrik Rogge
  • Corresponding author
  • Institute of Medical Engineering, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marlitt Erbe
  • Institute of Medical Engineering, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thorsten M. Buzug
  • Institute of Medical Engineering, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kerstin Lüdtke-Buzug
  • Institute of Medical Engineering, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-26 | DOI: https://doi.org/10.1515/bmt-2013-0034

Abstract

Ferrofluids, which are stable, colloidal suspensions of single-domain magnetic nanoparticles, have a large impact on medical technologies like magnetic particle imaging (MPI), magnetic resonance imaging (MRI) and hyperthermia. Here, computer simulations promise to improve our understanding of the versatile magnetization dynamics of diluted ferrofluids. A detailed algorithmic introduction into the simulation of diluted ferrofluids will be presented. The algorithm is based on Langevin equations and resolves the internal and the external rotation of the magnetic moment of the nanoparticles, i.e., the Néel and Brown diffusion. The derived set of stochastic differential equations are solved by a combination of an Euler and a Heun integrator and tested with respect to Boltzmann statistics.

Keywords: Brown rotation; combined rotation; Langevin equation; magnetic particle imaging; Néel rotation; super-paramagnetic particles

References

  • [1]

    Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2: 22–32.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    Berkov DV, Gorn NL, Schmitz R, Stock D. Langevin dynamic simulations of fast remagnetization processes in ferrofluids with internal magnetic degrees of freedom. J Phys Cond Matter 2006; 18: S2595.CrossrefGoogle Scholar

  • [3]

    Bertotti G, Mayergoyz I, Serpico C. Nonlinear magnetization dynamics in nanosystems. UK: Elsevier, 2009.Google Scholar

  • [4]

    Coffey WT, Kalmykov YP, Waldron JT. The Langevin equation. 2nd ed. USA: World Scientific, 2004.Google Scholar

  • [5]

    Garca-Palacios JL, Luis J, Lázaro FJ. Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys Rev B 1998; 58: 14937–14958.Google Scholar

  • [6]

    Gardiner GW. Handbook of stochastic methods. 3rd ed. Germany: Springer, 2004.Google Scholar

  • [7]

    Guimaraes AP. Principles of nanomagnetism. Nanoscience and Technology. Germany: Springer, 2009.Google Scholar

  • [8]

    Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214–1217.Google Scholar

  • [9]

    Kloeden PE, Platen E. Numerical solution of stochastic differential equation. 2nd ed. Germany: Springer, 1995.Google Scholar

  • [10]

    Raible M, Engel A. Langevin equation for the rotation of a magnetic particle. Appl Organometal Chem 2004; 18: 536–541.CrossrefGoogle Scholar

  • [11]

    Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002; 252: 370–374.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    Scherer C. Computer simulation of the stochastic dynamics of super-paramagnetic particles in ferrofluids. Brazilian J Phys 2006; 36: S0103.Google Scholar

  • [13]

    Van Kampen NG. Stochastic processes in physics and chemistry. Netherlands: North Holland, 2007.Google Scholar

  • [14]

    Weizenecker J, Gleich B, Rahmera J, Bogert J. Particle dynamics of mono-domain particles in magnetic particle imaging. Magnetic Nanoperticless, USA: World Scientific, 2010.Google Scholar

  • [15]

    Wong E, Zakai M. On the convergence of ordinary integrals to stochastic integrals. Ann Math Stat 1965; 36: 1560–1564.CrossrefGoogle Scholar

  • [16]

    Yasumuri, I Reinen D, Selwood PW. Anisotropic behaviour in superparamagnetic systems. J Appl Phys 1963; 34: 3544–3549.CrossrefGoogle Scholar

About the article

Corresponding author: Henrik Rogge, Institute of Medical Engineering, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany, E-mail:


Received: 2013-02-28

Accepted: 2013-09-16

Published Online: 2013-10-26

Published in Print: 2013-12-01


Citation Information: Biomedizinische Technik/Biomedical Engineering, Volume 58, Issue 6, Pages 601–609, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2013-0034.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tobias Kluth
Inverse Problems, 2018, Volume 34, Number 8, Page 083001
[2]
Matthias Graeser, Tobias Knopp, Patryk Szwargulski, Thomas Friedrich, Anselm von Gladiss, Michael Kaul, Kannan M Krishnan, Harald Ittrich, Gerhard Adam, and Thorsten M. Buzug
Scientific Reports, 2017, Volume 7, Number 1
[4]
M Utkur, Y Muslu, and E U Saritas
Physics in Medicine and Biology, 2017, Volume 62, Number 9, Page 3422
[5]
M Graeser, K Bente, A Neumann, and T M Buzug
Journal of Physics D: Applied Physics, 2016, Volume 49, Number 4, Page 045007
[6]
Daniel B. Reeves and John B. Weaver
Applied Physics Letters, 2015, Volume 107, Number 22, Page 223106
[7]
M Graeser, K Bente, and T M Buzug
Journal of Physics D: Applied Physics, 2015, Volume 48, Number 27, Page 275001

Comments (0)

Please log in or register to comment.
Log in