Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 59, Issue 2

Issues

Volume 57 (2012)

A novel approach in extracorporeal circulation: individual, integrated, and interactive heart-lung assist (I3-Assist)

Georg Wagner
  • Corresponding author
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Schlanstein
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandra Fiehe
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tim Kaufmann
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rüdger Kopp
  • Department of Intensive Care Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ralf Bensberg
  • Department of Intensive Care Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Schmitz-Rode
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Steinseifer
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jutta Arens
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-11 | DOI: https://doi.org/10.1515/bmt-2013-0026

Abstract

Extracorporeal life support (ECLS) is a well-established technique for the treatment of different cardiac and pulmonary diseases, e.g., congenital heart disease and acute respiratory distress syndrome. Additionally, severely ill patients who cannot be weaned from the heart-lung machine directly after surgery have to be put on ECLS for further therapy. Although both systems include identical components, a seamless transition is not possible yet. The adaption of the circuit to the patients’ size and demand is limited owing to the components available. The project I³-Assist aims at a novel concept for extracorporeal circulation. To better match the patient’s therapeutic demand of support, an individual number of one-size oxygenators and heat exchangers will be combined. A seamless transition between cardiopulmonary bypass and ECLS will be possible as well as the exchange of components during therapy to enhance circuit maintenance throughout long-term support. Until today, a novel oxygenator and heat exchanger along with a simplified manufacturing protocol have been established. The first layouts of the unit to allow the spill- and bubble-free connection and disconnection of modules as well as improved cannulas and a rotational pump are investigated using computational fluid dynamics. Tests were performed according to current guidelines in vitro and in vivo. The test results show the feasibility and potential of the concept.

Keywords: ECLS; HLM; individual therapy; modular design; normative testing

References

  • [1]

    Allen S, Holena D, McCunn M, Kohl B, Sarani B. A review of the fundamental principles and evidence base in the use of extracorporeal membrane oxygenation (ECMO) in critically ill adult patients. J Intensive Care Med 2011; 26: 13–26.CrossrefPubMedGoogle Scholar

  • [2]

    Ando M, Takahashi Y, Suzuki N. Open heart surgery for small children without homologous blood transfusion by using remote pump head system. Ann Thorac Surg 2004; 78: 1717–1722.PubMedCrossrefGoogle Scholar

  • [3]

    Arens J, Schoberer M, Lohr A, et al. NeonatOx: a pumpless extracorporeal lung support for premature neonates. Artif Organs 2011; 35: 997–1001.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    Arens J, Schnoering H, Pfennig M, et al. The Aachen MiniHLM – a miniaturized heart-lung machine for neonates with an integrated rotary blood pump. Artif Organs 2010; 34: 707–713.Web of ScienceCrossrefGoogle Scholar

  • [5]

    ASTM. ASTM F 1830:1997 – standard practice for selection of blood for in vitro evaluation of blood pumps, 1997.Google Scholar

  • [6]

    Bakhtiary F, Keller H, Dogan S, et al. Venoarterial extracorporeal membrane oxygenation for treatment of cardiogenic shock: clinical experiences in 45 adult patients. J Thorac Cardiovasc Surg 2008; 135: 382–388.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Bartlett RH. Extracorporeal life support in the management of severe respiratory failure. Clin Chest Med 2000; 21: 555–561.CrossrefPubMedGoogle Scholar

  • [8]

    Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB. Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 1985; 76: 479–487.PubMedGoogle Scholar

  • [9]

    Beall A Jr, Yow E Jr, Bloodwell RD, Hallman GL, Cooley DA. Open heart surgery without blood transfusion. Arch Surg 1967; 94: 567–570.PubMedCrossrefGoogle Scholar

  • [10]

    Chen Y-S, Yu H-Y, Huang S-C, et al. Experience and result of extracorporeal membrane oxygenation in treating fulminant myocarditis with shock: what mechanical support should be considered first? J Heart Lung Transplant 2005; 24: 81–87.CrossrefGoogle Scholar

  • [11]

    Combes A, Leprince P, Luyt C-E, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 2008; 36: 1404–1411.CrossrefPubMedGoogle Scholar

  • [12]

    Cruz D, Bellomo R, Kellum JA, de Cal M, Ronco C. The future of extracorporeal support. Crit Care Med 2008; 36: S243–S252.CrossrefGoogle Scholar

  • [13]

    DIN EN 12022:1999 – Blutgasaustauscher. DIN Deutsches Institut für Normung e.V., Berlin: Beuth Verlag, März 1999.Google Scholar

  • [14]

    Durandy Y. Blood transfusion in pediatric cardiac surgery. Artif Organs 2010; 34: 1057–1061.PubMedCrossrefGoogle Scholar

  • [15]

    Eash HJ, Jones HM, Hattler BG, Federspiel WJ. Evaluation of plasma resistant hollow fiber membranes for artificial lungs. ASAIO J 2004; 50: 491–497.PubMedCrossrefGoogle Scholar

  • [16]

    Edmunds LH. Advances in the heart-lung machine after John and Mary Gibbon. Ann Thorac Surg 2003; 76: S2220–S2223.CrossrefGoogle Scholar

  • [17]

    Fiehe S, Wagner G, Schlanstein P, et al. Implementation of quality management in early stages of research and development projects at a university. Biomed Eng/Biomed Technik 2014; 59: 135–145..Google Scholar

  • [18]

    Fleming GM, Gurney JG, Donohue JE, Remenapp RT, Annich GM. Mechanical component failures in 28,171 neonatal and pediatric extracorporeal membrane oxygenation courses from 1987 to 2006. Pediatr Crit Care Med 2009; 10: 439–444.Google Scholar

  • [19]

    Gibbon J Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 1954; 37: 171–185; passim.Google Scholar

  • [20]

    Golab HD, Takkenberg JJ, Bogers AJJC. Specific requirements for bloodless cardiopulmonary bypass in neonates and infants; a review. Perfusion 2010; 25: 237–243.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [21]

    Haines NM, Rycus PT, Zwischenberger JB, Bartlett RH, Undar A. Extracorporeal life support registry report 2008: neonatal and pediatric cardiac cases. ASAIO J 2009; 55: 111–116.Web of ScienceGoogle Scholar

  • [22]

    Hickey E, Karamlou T, You J, Ungerleider R. Effects of circuit miniaturization in reducing inflammatory response to infant cardiopulmonary bypass by elimination of allogeneic blood products. Ann Thorac Surg 2006; 81: 2367–2372.CrossrefGoogle Scholar

  • [23]

    Hill JD, O’Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome): use of the Bramson membrane lung. N Engl J Med 1972; 286: 629–634.CrossrefGoogle Scholar

  • [24]

    ISO 7199:2009 – Cardiovascular implants and artificial organs – blood-gas exchangers (oxygenators). ISO International Organization for Standardization, Geneva, April 2009.Google Scholar

  • [25]

    Kato S, Morimoto S, Hiramitsu S, Nomura M, Ito T, Hishida H. Use of percutaneous cardiopulmonary support of patients with fulminant myocarditis and cardiogenic shock for improving prognosis. Am J Cardiol 1999; 83: 623–5, A10.CrossrefPubMedGoogle Scholar

  • [26]

    Kaufmann TAS, Hormes M, Laumen M, et al. Flow distribution during cardiopulmonary bypass in dependency on the outflow cannula positioning. Artif Organs 2009; 33: 988–992.Web of ScienceCrossrefGoogle Scholar

  • [27]

    Kaufmann TAS, Wong KC, Schmitz-Rode T, Steinseifer U. Mimicking of cerebral autoregulation by flow-dependent cerebrovascular resistance: a feasibility study. Artif Organs 2012; 36: E97–101.Web of ScienceCrossrefGoogle Scholar

  • [28]

    Kawaguchi A, Bergsland J, Subramanian S. Total bloodless open heart surgery in the pediatric age group. Circulation 1984; 70: I30–I37.Google Scholar

  • [29]

    Kawahito K, Murata S, Yasu T, et al. Usefulness of extracorporeal membrane oxygenation for treatment of fulminant myocarditis and circulatory collapse. Am J Cardiol 1998; 82: 910–911.PubMedCrossrefGoogle Scholar

  • [30]

    Kotani Y, Honjo O, Nakakura M, et al. Impact of miniaturization of cardiopulmonary bypass circuit on blood transfusion requirement in neonatal open-heart surgery. ASAIO J 2007; 53: 662–665.Web of ScienceCrossrefGoogle Scholar

  • [31]

    Lan C, Tsai P-R, Chen Y-S, Ko W-J. Prognostic factors for adult patients receiving extracorporeal membrane oxygenation as mechanical circulatory support – a 14-year experience at a medical center. Artif Organs 2010; 34: E59–E64.Google Scholar

  • [32]

    Lau CL, Posther KE, Stephenson GR, et al. Mini-circuit cardiopulmonary bypass with vacuum assisted venous drainage: feasibility of an asanguineous prime in the neonate. Perfusion 1999; 14: 389–396.CrossrefGoogle Scholar

  • [33]

    Merkle F, Boettcher W, Schulz F, Koster A, Huebler M, Hetzer R. Perfusion technique for nonhaemic cardiopulmonary bypass prime in neonates and infants under 6 kg body weight. Perfusion 2004; 19: 229–237.Google Scholar

  • [34]

    Miyaji K, Kohira S, Miyamoto T, et al. Pediatric cardiac surgery without homologous blood transfusion, using a miniaturized bypass system in infants with lower body weight. J Thorac Cardiovasc Surg 2007; 134: 284–289.CrossrefWeb of ScienceGoogle Scholar

  • [35]

    Montoya JP, Shanley CJ, Merz SI, Bartlett RH. Plasma leakage through microporous membranes: role of phospholipids. ASAIO J 1992; 38: M399–M405.CrossrefGoogle Scholar

  • [36]

    Nakanishi K, Shichijo T, Shinkawa Y, et al. Usefulness of vacuum-assisted cardiopulmonary bypass circuit for pediatric open-heart surgery in reducing homologous blood transfusion. Eur J Cardiothorac Surg 2001; 20: 233–238.CrossrefGoogle Scholar

  • [37]

    Ota K. Advances in artificial lungs. J Artif Organs 2010; 13: 13–16.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [38]

    Rahe-Meyer N, Solomon C, Tokuno M-L, et al. Comparative assessment of coagulation changes induced by two different types of heart-lung machine. Artif Organs 2010; 34: 3–12.Web of ScienceCrossrefGoogle Scholar

  • [39]

    Reiss N, El Banayosy A, Posival H, Morshuis M, Minami K, Körfer R. Management of acute fulminant myocarditis using circulatory support systems. Artif Organs 1996; 20: 964–970.PubMedCrossrefGoogle Scholar

  • [40]

    Roche JK, Stengle JM. Open-heart surgery and the demand for blood. J Am Med Assoc 1973; 225: 1516–1521.CrossrefGoogle Scholar

  • [41]

    Schaible T, Hermle D, Loersch F, Demirakca S, Reinshagen K, Varnholt V. A 20-year experience on neonatal extracorporeal membrane oxygenation in a referral center. Intensive Care Med 2010; 36: 1229–1234.Google Scholar

  • [42]

    Stein JI, Gombotz H, Rigler B, Metzler H, Suppan C, Beitzke A. Open heart surgery in children of Jehovah’s Witnesses: extreme hemodilution on cardiopulmonary bypass. Pediatr Cardiol 1991; 12: 170–174.CrossrefGoogle Scholar

  • [43]

    Ugaki S, Kasahara S, Kotani Y, et al. Extracorporeal membrane oxygenation following Norwood stage 1 procedures at a single institution. Artif Organs 2010; 34,: 898–903.CrossrefGoogle Scholar

  • [44]

    Ungerleider RM, Shen I. Optimizing response of the neonate and infant to cardiopulmonary bypass. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2003; 6: 140–146.PubMedCrossrefGoogle Scholar

  • [45]

    Willcox TW. Vacuum-assisted venous drainage: to air or not to air, that is the question. Has the bubble burst? J Extra Corpor Technol 2002; 34: 24–28.Google Scholar

About the article

Corresponding author: Dipl.-Ing. Georg Wagner, Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany, Phone: +49 241 80 89 888, Fax: +49 241 80 82 144, E-mail:

aThese authors contributed equally to this article.


Received: 2013-03-28

Accepted: 2013-11-06

Published Online: 2013-12-11

Published in Print: 2014-04-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 59, Issue 2, Pages 125–133, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2013-0026.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Detlef Lohse
Physical Review Fluids, 2018, Volume 3, Number 11

Comments (0)

Please log in or register to comment.
Log in