Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 59, Issue 3

Issues

Volume 57 (2012)

Bioartificial fabrication of regenerating blood vessel substitutes: requirements and current strategies

Mathias Wilhelmi
  • Department of Cardiothoracic-, Transplantation-, and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Jockenhoevel
  • Department of Tissue Engineering and Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52072 Aachen, Germany
  • Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petra Mela
  • Corresponding author
  • Department of Tissue Engineering and Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52072 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-01 | DOI: https://doi.org/10.1515/bmt-2013-0112

Abstract

This work reviews the tremendous development in the field of vascular graft tissue engineering driven by a clear and increasing clinical need for functional vascular replacements able to grow and remodel. The different strategies to tissue engineer blood vessels are presented, from the classical approach of a living implant generated in vitro by conditioning a cell-seeded scaffold to remarkable paradigm shifts either i) toward a completely biology-driven strategy (scaffold-free approaches) or ii) the opposite tendency of cell-free scaffolds aiming at eliciting the host reaction for in situ tissue engineering. In the scaffold-based approaches emphasis is given to the material choice.

Keywords: bioartificial substitutes; biomaterials; blood vessels; scaffold; tissue engineering; vascular grafts

References

  • [1]

    Amiel GE, Komura M, Shapira O, et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng 2006; 12: 2355–2365.CrossrefGoogle Scholar

  • [2]

    Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.CrossrefGoogle Scholar

  • [3]

    Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003; 107: 1024–1032.CrossrefGoogle Scholar

  • [4]

    Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater 2009; 5: 1–13.CrossrefGoogle Scholar

  • [5]

    Bar A, Dorfman SE, Fischer P, et al. The pro-angiogenic factor CCN1 enhances the re-endothelialization of biological vascularized matrices in vitro. Cardiovasc Res 2010; 85: 806–813.Google Scholar

  • [6]

    Boer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, Wilhelmi M. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 2011; 32: 9730–9737.CrossrefGoogle Scholar

  • [7]

    Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 1999; 85: 1173–1178.CrossrefGoogle Scholar

  • [8]

    Cholewinski E, Dietrich M, Flanagan TC, Schmitz-Rode T, Jockenhoevel S. Tranexamic acid – an alternative to aprotinin in fibrin-based cardiovascular tissue engineering. Tissue Eng Part A 2009; 15: 3645–3653.CrossrefGoogle Scholar

  • [9]

    Condorelli G, Borello U, De Angelis L, et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA 2001; 98: 10733–10738.CrossrefGoogle Scholar

  • [10]

    Crapo PM, Wang Y. Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Biomaterials 2010; 31: 1626–1635.CrossrefGoogle Scholar

  • [11]

    Dahl SL, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 2003; 12: 659–666.Google Scholar

  • [12]

    Dahl SL, Kypson AP, Lawson JH, et al. Readily available tissue-engineered vascular grafts. Sci Transl Med 2011; 3: 68ra69.Google Scholar

  • [13]

    Diehm C, Kareem S, Lawall H. Epidemiology of peripheral arterial disease. Vasa 2004; 33: 183–189.CrossrefGoogle Scholar

  • [14]

    Dietrich M, Heselhaus J, Wozniak J, et al. Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation. Tissue Eng Part C Methods 2013; 19: 216–226.CrossrefGoogle Scholar

  • [15]

    Dong Y, Yong T, Liao S, Chan CK, Ramakrishna S. Long-term viability of coronary artery smooth muscle cells on poly(L-lactide-co-epsilon-caprolactone) nanofibrous scaffold indicates its potential for blood vessel tissue engineering. J R Soc Interface 2008; 5: 1109–1118.CrossrefGoogle Scholar

  • [16]

    Du F, Wang H, Zhao W, et al. Gradient nanofibrous chitosan/poly varepsilon-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 2012; 33: 762–770.CrossrefGoogle Scholar

  • [17]

    Edelman ER. Vascular tissue engineering : designer arteries. Circ Res 1999; 85: 1115–1117.CrossrefGoogle Scholar

  • [18]

    Formichi MJ, Guidoin RG, Jausseran JM, et al. Expanded PTFE prostheses as arterial substitutes in humans: late pathological findings in 73 excised grafts. Ann Vasc Surg 1988; 2: 14–27.CrossrefGoogle Scholar

  • [19]

    Greisler HP, Schwarcz TH, Ellinger J, Kim DU. Dacron inhibition of arterial regenerative activities. J Vasc Surg 1986; 3: 747–756.CrossrefGoogle Scholar

  • [20]

    Gruene M, Pflaum M, Hess C, et al. Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 2011; 17: 973–982.CrossrefGoogle Scholar

  • [21]

    Guidoin R, Noel HP, Marois M, et al. Another look at the Sparks-Mandril arterial graft precursor for vascular repair. Pathology by scanning electron microscopy. Biomater Med Devices Artif Organs 1980; 8: 145–167.Google Scholar

  • [22]

    Hallin RW, Sweetman WR. The Sparks’ mandril graft. A seven year follow-up of mandril grafts placed by Charles H. Sparks and his associates. Am J Surg 1976; 132: 221–223.CrossrefGoogle Scholar

  • [23]

    Hibino N, Duncan DR, Nalbandian A, et al. Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg 2012; 143: 696–703.CrossrefGoogle Scholar

  • [24]

    Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 2010; 139: 431–436, 436.e431–432.CrossrefGoogle Scholar

  • [25]

    Hibino N, Villalona G, Pietris N, et al. Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB J 2011; 25: 2731–2739.CrossrefPubMedGoogle Scholar

  • [26]

    Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 2001; 20: 164–169.CrossrefGoogle Scholar

  • [27]

    Hong Y, Ye SH, Nieponice A, Soletti L, Vorp DA, Wagner WR. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials 2009; 30: 2457–2467.CrossrefGoogle Scholar

  • [28]

    Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 1999; 17: 1083–1086.Google Scholar

  • [29]

    Jeong SI, Kim SY, Cho SK, et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 2007; 28: 1115–1122.CrossrefGoogle Scholar

  • [30]

    Jockenhoevel S, Chalabi K, Sachweh JS, et al. Tissue engineering: complete autologous valve conduit – a new moulding technique. Thorac Cardiovasc Surg 2001; 49: 287–290.CrossrefGoogle Scholar

  • [31]

    Karnik SK, Brooke BS, Bayes-Genis A, et al. A critical role for elastin signaling in vascular morphogenesis and disease. Development 2003; 130: 411–423.CrossrefGoogle Scholar

  • [32]

    Kelm JM, Lorber V, Snedeker JG, et al. A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol 2010; 148: 46–55.CrossrefGoogle Scholar

  • [33]

    Kim BS, Mooney DJ. Engineering smooth muscle tissue with a predefined structure. J Biomed Mater Res 1998; 41: 322–332.CrossrefGoogle Scholar

  • [34]

    Koch S, Flanagan TC, Sachweh JS, et al. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 2010; 31: 4731–4739.CrossrefGoogle Scholar

  • [35]

    Koenneker S, Teebken OE, Bonehie M, et al. A biological alternative to alloplastic grafts in dialysis therapy: evaluation of an autologised bioartificial haemodialysis shunt vessel in a sheep model. Eur J Vasc Endovasc Surg 2010; 40: 810–816.CrossrefGoogle Scholar

  • [36]

    Konig G, McAllister TN, Dusserre N, et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 2009; 30: 1542–1550.CrossrefGoogle Scholar

  • [37]

    L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006; 12: 361–365.CrossrefGoogle Scholar

  • [38]

    L’Heureux N, Germain L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg 1993; 17: 499–509.CrossrefGoogle Scholar

  • [39]

    L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 2007; 357: 1451–1453.CrossrefGoogle Scholar

  • [40]

    L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J 1998; 12: 47–56.Google Scholar

  • [41]

    L’Heureux N, Stoclet JC, Auger FA, Lagaud GJ, Germain L, Andriantsitohaina R. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J 2001; 15: 515–524.CrossrefGoogle Scholar

  • [42]

    Lee KW, Stolz DB, Wang Y. Substantial expression of mature elastin in arterial constructs. Proc Natl Acad Sci USA 2011; 108: 2705–2710.CrossrefGoogle Scholar

  • [43]

    Lim SH, Cho SW, Park JC, et al. Tissue-engineered blood vessels with endothelial nitric oxide synthase activity. J Biomed Mater Res B Appl Biomater 2008; 85: 537–546.CrossrefGoogle Scholar

  • [44]

    Long JL, Tranquillo RT. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol 2003; 22: 339–350.CrossrefGoogle Scholar

  • [45]

    Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697–705.CrossrefGoogle Scholar

  • [46]

    Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003; 24: 2303–2308.CrossrefGoogle Scholar

  • [47]

    Matsumura G, Ishihara Y, Miyagawa-Tomita S, et al. Evaluation of tissue-engineered vascular autografts. Tissue Eng 2006; 12: 3075–3083.CrossrefGoogle Scholar

  • [48]

    Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 2003; 108: 1729–1734.CrossrefGoogle Scholar

  • [49]

    Matsumura G, Nitta N, Matsuda S, et al. Long-term results of cell-free biodegradable scaffolds for in situ tissue-engineering vasculature: in a canine inferior vena cava model. PLoS One 2012; 7: e35760.CrossrefGoogle Scholar

  • [50]

    McFetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 2004; 70: 224–234.CrossrefGoogle Scholar

  • [51]

    Mooney DJ, Mazzoni CL, Breuer C, et al. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 1996; 17: 115–124.CrossrefGoogle Scholar

  • [52]

    Mrowczynski W, Mugnai D, de Valence S, et al. Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J Vasc Surg 2014; 59: 210–219.CrossrefGoogle Scholar

  • [53]

    Nakayama Y, Tsujinaka T. Acceleration of robust “biotube” vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold. J Biomed Mater Res B Appl Biomater 2014; 102: 231–238.CrossrefGoogle Scholar

  • [54]

    Nakayama Y, Ishibashi-Ueda H, Takamizawa K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transplant 2004; 13: 439–449.CrossrefGoogle Scholar

  • [55]

    Nieponice A, Soletti L, Guan J, et al. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 2010; 16: 1215–1223.CrossrefGoogle Scholar

  • [56]

    Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999; 284: 489–493.CrossrefGoogle Scholar

  • [57]

    Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009; 30: 5910–5917.CrossrefGoogle Scholar

  • [58]

    Olausson M, Patil PB, Kuna VK, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 2012; 380: 230–237.CrossrefGoogle Scholar

  • [59]

    Opitz F, Schenke-Layland K, Cohnert TU, et al. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc Res 2004; 63: 719–730.CrossrefGoogle Scholar

  • [60]

    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–705.CrossrefGoogle Scholar

  • [61]

    Patterson JT, Gilliland T, Maxfield MW, et al. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 2012; 7: 409–419.CrossrefGoogle Scholar

  • [62]

    Peck M, Gebhart D, Dusserre N, McAllister TN, L’Heureux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 2012; 195: 144–158.CrossrefGoogle Scholar

  • [63]

    Pektok E, Nottelet B, Tille JC, et al. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 2008; 118: 2563–2570.CrossrefGoogle Scholar

  • [64]

    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.CrossrefGoogle Scholar

  • [65]

    Roh JD, Sawh-Martinez R, Brennan MP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 2010; 107: 4669–4674.CrossrefGoogle Scholar

  • [66]

    Rufaihah AJ, Huang NF, Jame S, et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 2011; 31: e72–e79.CrossrefGoogle Scholar

  • [67]

    Sakai O, Kanda K, Takamizawa K, Sato T, Yaku H, Nakayama Y. Faster and stronger vascular “Biotube” graft fabrication in vivo using a novel nicotine-containing mold. J Biomed Mater Res B Appl Biomater 2009; 90: 412–420.Google Scholar

  • [68]

    Sandusky GE, Jr., Badylak SF, Morff RJ, Johnson WD, Lantz G. Histologic findings after in vivo placement of small intestine submucosal vascular grafts and saphenous vein grafts in the carotid artery in dogs. Am J Pathol 1992; 140: 317–324.Google Scholar

  • [69]

    Schilling JA, Shurley HM, Joel W, Richter KM, White BN. Fibrocollagenous tubes structured in vivo. Morphology and biological characteristics. Arch Pathol 1961; 71: 548–553.Google Scholar

  • [70]

    Schmidt D, Dijkman PE, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 2010; 56: 510–520.CrossrefGoogle Scholar

  • [71]

    Sell SA, McClure MJ, Barnes CP, et al. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater 2006; 1: 72–80.CrossrefGoogle Scholar

  • [72]

    Shell DHT, Croce MA, Cagiannos C, Jernigan TW, Edwards N, Fabian TC. Comparison of small-intestinal submucosa and expanded polytetrafluoroethylene as a vascular conduit in the presence of gram-positive contamination. Ann Surg 2005; 241: 995–1001; discussion 1001–1004.CrossrefGoogle Scholar

  • [73]

    Shinoka T, Shum-Tim D, Ma PX, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 1998; 115: 536–545; discussion 545–536.CrossrefGoogle Scholar

  • [74]

    Shum-Tim D, Stock U, Hrkach J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 1999; 68: 2298–2304; discussion 2305.CrossrefGoogle Scholar

  • [75]

    Skalak R, Fox C. Tissue Engineering. In: Workshop on Tissue Engineering. 1988. Granlibakken, Lake Tahoe, CA: Liss, New York, NY, USA.Google Scholar

  • [76]

    Sparks CH. Autogenous grafts made to order. Ann Thorac Surg 1969; 8: 104–113.CrossrefGoogle Scholar

  • [77]

    Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol 2005; 288: H1451–H1460.Google Scholar

  • [78]

    Syedain ZH, Meier LA, Bjork JW, Lee A, Tranquillo RT. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 2011; 32: 714–722.CrossrefGoogle Scholar

  • [79]

    Syedain ZH, Meier LA, Lahti MT, Johnson SS, Hebbel RP, Tranquillo RT, Implantation of completely biological, aligned engineered arteries pre-made from allogeneic fibroblasts in sheep model, in First international symposium on vascular tissue engineering. 2013: Leiden, The Netherlands.Google Scholar

  • [80]

    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.CrossrefGoogle Scholar

  • [81]

    Tamura N, Nakamura T, Terai H, et al. A new acellular vascular prosthesis as a scaffold for host tissue regeneration. Int J Artif Organs 2003; 26: 783–792.Google Scholar

  • [82]

    Teebken OE, Bader A, Steinhoff G, Haverich A. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 2000; 19: 381–386.CrossrefGoogle Scholar

  • [83]

    Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 2009; 30: 583–588.CrossrefGoogle Scholar

  • [84]

    Tiwari A, Salacinski HJ, Hamilton G, Seifalian AM. Tissue engineering of vascular bypass grafts: role of endothelial cell extraction. Eur J Vasc Endovasc Surg 2001; 21: 193–201.CrossrefGoogle Scholar

  • [85]

    Tschoeke B, Flanagan TC, Cornelissen A, et al. Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif Organs 2008; 32: 800–809.Google Scholar

  • [86]

    Tschoeke B, Flanagan TC, Koch S, et al. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng Part A 2009; 15: 1909–1918.CrossrefGoogle Scholar

  • [87]

    Tu JV, Pashos CL, Naylor CD, et al. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N Engl J Med 1997; 336: 1500–1505.CrossrefGoogle Scholar

  • [88]

    Udelsman BV, Maxfield MW, Breuer CK. Tissue engineering of blood vessels in cardiovascular disease: moving towards clinical translation. Heart 2013; 99: 454–460.CrossrefGoogle Scholar

  • [89]

    Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999; 354 Suppl 1: SI32–SI34.Google Scholar

  • [90]

    Wake MC, Gupta PK, Mikos AG. Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant 1996; 5: 465–473.CrossrefGoogle Scholar

  • [91]

    Wang H, Feng Y, An B, et al. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. J Mater Sci Mater Med 2012; 23: 1499–1510.CrossrefGoogle Scholar

  • [92]

    Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y. Autologous small-caliber “biotube” vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits. J Biomed Mater Res B Appl Biomater 2010; 92: 236–242.CrossrefPubMedGoogle Scholar

  • [93]

    Watanabe M, Shin’oka T, Tohyama S, et al. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 2001; 7: 429–439.CrossrefGoogle Scholar

  • [94]

    Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta 2011; 32 Suppl 4: S316–319.CrossrefGoogle Scholar

  • [95]

    Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986; 231: 397–400.CrossrefGoogle Scholar

  • [96]

    Wilhelmi MH, Mertsching H, Wilhelmi M, Leyh R, Haverich A. Role of inflammation in allogeneic and xenogeneic heart valve degeneration: immunohistochemical evaluation of inflammatory endothelial cell activation. J Heart Valve Dis 2003; 12: 520–526.Google Scholar

  • [97]

    Wilhelmi MH, Rebe P, Leyh R, Wilhelmi M, Haverich A, Mertsching H. Role of inflammation and ischemia after implantation of xenogeneic pulmonary valve conduits: histological evaluation after 6 to 12 months in sheep. Int J Artif Organs 2003; 26: 411–420.Google Scholar

  • [98]

    Williamson MR, Black R, Kielty C. PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials 2006; 27: 3608–3616.Google Scholar

  • [99]

    Williamson MR, Shuttleworth A, Canfield AE, Black RA, Kielty CM. The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment. Biomaterials 2007; 28: 5307–5318.CrossrefGoogle Scholar

  • [100]

    Williamson MR, Woollard KJ, Griffiths HR, Coombes AG. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells. Tissue Eng 2006; 12: 45–51.CrossrefGoogle Scholar

  • [101]

    Wu W, Allen R, Gao J, Wang Y. Artificial niche combining elastomeric substrate and platelets guides vascular differentiation of bone marrow mononuclear cells. Tissue Eng Part A 2011; 17: 1979–1992.CrossrefGoogle Scholar

  • [102]

    Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med 2012; 18: 1148–1153.CrossrefGoogle Scholar

  • [103]

    Wu X, Rabkin-Aikawa E, Guleserian KJ, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2004; 287: H480–H487.Google Scholar

  • [104]

    Wystrychowski W, Cierpka L, Zagalski K, et al. Case study: first implantation of a frozen, devitalized tissue-engineered vascular graft for urgent hemodialysis access. J Vasc Access 2011; 12: 67–70.CrossrefGoogle Scholar

  • [105]

    Yamanami M, Ishibashi-Ueda H, Yamamoto A, et al. Implantation study of small-caliber “biotube” vascular grafts in a rat model. J Artif Organs 2013; 16: 59–65.CrossrefGoogle Scholar

  • [106]

    Ye L, Wu X, Duan HY, et al. The in vitro and in vivo biocompatibility evaluation of heparin-poly(epsilon-caprolactone) conjugate for vascular tissue engineering scaffolds. J Biomed Mater Res A 2012; 100: 3251–3258.CrossrefGoogle Scholar

  • [107]

    Yokota T, Ichikawa H, Matsumiya G, et al. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg 2008; 136: 900–907.CrossrefGoogle Scholar

  • [108]

    Zhang M, Wang K, Wang Z, Xing B, Zhao Q, Kong D. Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. J Mater Sci Mater Med 2012; 23: 2639–2648.CrossrefGoogle Scholar

  • [109]

    Zhao Y, Zhang S, Zhou J, et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 2010; 31: 296–307.CrossrefGoogle Scholar

  • [110]

    Zheng W, Wang Z, Song L, et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials 2012; 33: 2880–2891.CrossrefGoogle Scholar

  • [111]

    Zhou M, Liu Z, Liu C, et al. Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds. J Biomed Mater Res B Appl Biomater 2012; 100: 111–120.CrossrefGoogle Scholar

  • [112]

    Zhou M, Liu Z, Wei Z, et al. Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor. Artif Organs 2009; 33: 230–239.CrossrefGoogle Scholar

  • [113]

    Zippel R, Schlosser M. Antigenität von Polyestergefässprothesen. Gefässchirurgie 1999; 4: 91–95.Google Scholar

  • [114]

    Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211–228.CrossrefGoogle Scholar

  • [115]

    Zund G, Hoerstrup SP, Schoeberlein A, et al. Tissue engineering: a new approach in cardiovascular surgery: seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg 1998; 13: 160–164.CrossrefGoogle Scholar

About the article

Corresponding author: Petra Mela, Department of Tissue Engineering and Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52072 Aachen, Germany, Phone: +49 241 80 89886, Fax: +49 241 80 23402, E-mail: ;


Received: 2013-10-18

Accepted: 2014-02-03

Published Online: 2014-03-01

Published in Print: 2014-06-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 59, Issue 3, Pages 185–195, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2013-0112.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alicia Fernández-Colino, Frederic Wolf, Stephan Rütten, José Carlos Rodríguez-Cabello, Stefan Jockenhoevel, and Petra Mela
Macromolecular Bioscience, 2018, Page 1800147
[2]
Alicia Fernández-Colino, Frederic Wolf, Hans Keijdener, Stephan Rutten, Thomas Schmitz-Rode, Stefan Jockenhoevel, J. Carlos Rodríguez-Cabello, and Petra Mela
Materials Science and Engineering: C, 2018
[3]
Jingxian Wu, Changming Hu, Zengchao Tang, Qian Yu, Xiaoli Liu, and Hong Chen
Colloid and Interface Science Communications, 2018
[4]
Frederic Wolf, Diana M. Rojas González, Ulrich Steinseifer, Markus Obdenbusch, Werner Herfs, Christian Brecher, Stefan Jockenhoevel, Petra Mela, and Thomas Schmitz-Rode
Annals of Biomedical Engineering, 2018
[5]
Zhi-Cheng Xu, Qun Zhang, and Hong Li
Molecular Medicine Reports, 2017, Volume 15, Number 1, Page 417
[6]
Yumei Li, Xiang Li, Rui Zhao, Chuying Wang, Fangping Qiu, Bolun Sun, He Ji, Ju Qiu, and Ce Wang
Materials Science and Engineering: C, 2017, Volume 72, Page 106
[7]
Lin Ye, Jie Cao, Lamei Chen, Xue Geng, Ai-Ying Zhang, Lian-Rui Guo, Yong-Quan Gu, and Zeng-Guo Feng
Journal of Biomedical Materials Research Part A, 2015, Volume 103, Number 12, Page 3863

Comments (0)

Please log in or register to comment.
Log in