Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Editor-in-Chief: Dössel, Olaf

Editorial Board Member: Augat, Peter / Haueisen, Jens / Jockenhoevel, Stefan / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2016: 0.915
5-year IMPACT FACTOR: 1.263

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 59, Issue 4 (Aug 2014)

Issues

Volume 57 (2012)

In vivo validation of the electronic depth control probes

Balázs Dombovári
  • Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richárd Fiáth
  • Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bálint Péter Kerekes
  • Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emília Tóth
  • Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucia Wittner
  • Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Domonkos Horváth
  • Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karsten Seidl / Stanislav Herwik / Tom Torfs / Oliver Paul / Patrick Ruther / Herc Neves / István Ulbert
  • Corresponding author
  • Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-11 | DOI: https://doi.org/10.1515/bmt-2012-0102

Abstract

In this article, we evaluated the electrophysiological performance of a novel, high-complexity silicon probe array. This brain-implantable probe implements a dynamically reconfigurable voltage-recording device, coordinating large numbers of electronically switchable recording sites, referred to as electronic depth control (EDC). Our results show the potential of the EDC devices to record good-quality local field potentials, and single- and multiple-unit activities in cortical regions during pharmacologically induced cortical slow wave activity in an animal model.

Keywords: electronic depth control; microelectrode probe array; neural recording

References

  • [1]

    Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 1991; 38: 758–768.PubMedCrossrefGoogle Scholar

  • [2]

    Chauvette S, Volgushev M, Timofeev I. Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex 2010; 20: 2660–2674.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [3]

    Csercsa R, Dombovári B, Fabó D, et al. Laminar analysis of slow wave activity in humans. Brain 2010; 133: 2814–2829.Web of SciencePubMedCrossrefGoogle Scholar

  • [4]

    Csicsvari J, Hirase H, Czurko A, Buzsaki G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 1998; 21: 179–189.CrossrefPubMedGoogle Scholar

  • [5]

    Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single trial EEG dynamics including independent component analysis. J Neurosci Methods 2004; 134: 9–21.PubMedCrossrefGoogle Scholar

  • [6]

    Grand L, Wittner L, Herwik S, et al. Short and long term biocompatibility of NeuroProbes silicon probes. J Neurosci Methods 2010; 189: 216–229.Web of ScienceGoogle Scholar

  • [7]

    Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsaki G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 2000; 84: 401–414.PubMedGoogle Scholar

  • [8]

    Heitler JW. DataView v5: software for the display and analysis of digital signals in neurophysiology. 2006.Google Scholar

  • [9]

    Karmos G, Molnar M, Csepe V. A new multielectrode for chronic recording of intracortical field potentials in cats. Physiol Behav 1982; 29: 567–571.CrossrefPubMedGoogle Scholar

  • [10]

    Kubie JL. A driveable bundle of microwires for collecting single-unit data from freely-moving rats. Physiol Behav 1984; 32: 115–118.CrossrefPubMedGoogle Scholar

  • [11]

    McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 1983; 8: 391–397.CrossrefPubMedGoogle Scholar

  • [12]

    Neves HP, Torfs T, Yazicioglu RF, et al. The NeuroProbes project: a concept for electronic depth control. In: 30th International IEEE EMBS Conference, Vancouver, Canada, 2008: 1857.Google Scholar

  • [13]

    O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 1993; 3: 317–330.CrossrefGoogle Scholar

  • [14]

    Paxinos G, Watson CH. The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press 1998.Google Scholar

  • [15]

    Ruther P, Herwik S, Kisban S, Seidl K, Paul O. Recent Progress in Neural Probes Using Silicon MEMS Technology. IEEJ Trans Elec Electron Eng 2010; 5: 505–515.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    Sakata S, Harris KD. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 2008; 64: 404–418.Web of ScienceGoogle Scholar

  • [17]

    Seidl K, Herwik S, et al. CMOS-based high-density silicon microprobe arrays for electronic depth control in intracortical neural recording. J microelectromech Syst 2011; 20: 1439–1448.Web of ScienceGoogle Scholar

  • [18]

    Seidl K, Torfs T, Mazière PA, et al. Control and data acquisition software for high-density CMOS-based microprobe arrays implementing electronic depth control. Biomed Tech (Berl) 2010; 55: 183–191.Web of ScienceCrossrefGoogle Scholar

  • [19]

    Seidl K, Schwaerzle M, Ulbert I, Neves HP, Paul O, Ruther P. CMOS-based high-density silicon microprobe arrays for electronic depth control in intracortical neural recording – characterization and application. IEEE J MicroElectromech Syst 2012; 21: 1426–1435.CrossrefGoogle Scholar

  • [20]

    Torfs T, Aarts A, Erismis M, et al. Two-dimensional multi-channel neural probes with electronic depth control. IEEE Trans Biomed Circ Syst 2011; 5: 403–412.CrossrefGoogle Scholar

  • [21]

    Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science 1993; 261: 1055–1058.Google Scholar

  • [22]

    Wise KD, Angell JB, Starr A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 1970; 17: 238–247.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: István Ulbert, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary-1025, E-mail: ; and Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary-1083


Received: 2013-05-23

Accepted: 2013-08-30

Published Online: 2013-10-11

Published in Print: 2014-08-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2012-0102.

Export Citation

©2014 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eduardo Fernández and Pablo Botella
Advanced Biosystems, 2017, Page 1700115
[2]
Richard A Normann and Eduardo Fernandez
Journal of Neural Engineering, 2016, Volume 13, Number 6, Page 061003
[3]
Emília Tóth, Dániel Fabó, László Entz, István Ulbert, and Loránd Erőss
Journal of Neuroscience Methods, 2016, Volume 260, Page 261
[4]
Patrick Ruther and Oliver Paul
Current Opinion in Neurobiology, 2015, Volume 32, Page 31

Comments (0)

Please log in or register to comment.
Log in