Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 60, Issue 3

Issues

Volume 57 (2012)

An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand

Surjo R. Soekadar
  • Corresponding author
  • Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Witkowski
  • Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
  • Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicola Vitiello
  • The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy; and Fondazione Don Carlo Gnocchi, Center of Florence, via di Scandicci 256, 50143 Firenze, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niels Birbaumer
  • Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
  • Ospedale San Camillo – IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Venezia-Lido, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-09 | DOI: https://doi.org/10.1515/bmt-2014-0126

Abstract

The loss of hand function can result in severe physical and psychosocial impairment. Thus, compensation of a lost hand function using assistive robotics that can be operated in daily life is very desirable. However, versatile, intuitive, and reliable control of assistive robotics is still an unsolved challenge. Here, we introduce a novel brain/neural-computer interaction (BNCI) system that integrates electroencephalography (EEG) and electrooculography (EOG) to improve control of assistive robotics in daily life environments. To evaluate the applicability and performance of this hybrid approach, five healthy volunteers (HV) (four men, average age 26.5±3.8 years) and a 34-year-old patient with complete finger paralysis due to a brachial plexus injury (BPI) used EEG (condition 1) and EEG/EOG (condition 2) to control grasping motions of a hand exoskeleton. All participants were able to control the BNCI system (BNCI control performance HV: 70.24±16.71%, BPI: 65.93±24.27%), but inclusion of EOG significantly improved performance across all participants (HV: 80.65±11.28, BPI: 76.03±18.32%). This suggests that hybrid BNCI systems can achieve substantially better control over assistive devices, e.g., a hand exoskeleton, than systems using brain signals alone and thus may increase applicability of brain-controlled assistive devices in daily life environments.

Keywords: assistive brain-machine interface (BMI); biosignal fusion; brachial plexus injury (BPI); electrooculography (EOG); sensori-motor rhythms (SMR)

References

  • [1]

    Buch E, Weber C, Cohen LG, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 2008; 39: 910–917.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    Cempini M, Cortese M, Vitiello N. A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Trans Mechatron 2014; 99: 1–12.Google Scholar

  • [3]

    Cempini M, De Rossi SMM, Lenzi T, et al. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation. Proc IEEE Int Conf Rehab Robot 2013;2013:6650414.Google Scholar

  • [4]

    Collinger JL, Boninger ML, Bruns TM, Curley K, Wang W, Weber DJ. Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J Rehabil Res Dev 2013; 50: 145–160.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013; 381: 557–564.Web of ScienceGoogle Scholar

  • [6]

    Del R Millan J, Galan F, Vanhooydonck D, Lew E, Philips J, Nuttin M. Asynchronous non-invasive brain-activated control of an intelligent wheelchair. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 3361–3364.Google Scholar

  • [7]

    Millán JDR, Rupp R, Müller-Putz GR, et al. Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 2010; 4: 161.Google Scholar

  • [8]

    Future BNCI: a roadmap for future directions in brain/neuronal computer interaction research, Future BNCI Program under the European Union Seventh Framework Programme, FP7/2007-2013, grant 248320; http://www.brainable.org/Documents/Future_BNCI_Roadmap.pdf.

  • [9]

    Ganguly K, Secundo L, Ranade G, et al. Cortical representation of ipsilateral arm movements in monkey and man. J Neurosci. 2009; 29: 12948–12956.Web of ScienceCrossrefGoogle Scholar

  • [10]

    Hargrove LJ, Simon AM, Young AJ, et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med 2013; 369: 1237–1242.Web of ScienceGoogle Scholar

  • [11]

    Kiguchi K, Hayashi Y. An EMG based control for an upper-limb power-assist exoskeleton robot. IEEE Trans Syst Man Cyber B 2012; 42: 1064–1071.CrossrefGoogle Scholar

  • [12]

    Leeb R, Sagha H, Chavarriaga R, Millán J del R. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J Neural Eng 2011; 8: 025011.CrossrefGoogle Scholar

  • [13]

    Liyanage SR, Guan C, Zhang H, Ang KK, Xu J, Lee TH. Dynamically weighted ensemble classification for non-stationary EEG processing. J Neural Eng 2013; 10: 036007.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    Matsumoto Y, Seki M, Ando T, et al. Analysis of EMG signals of patients with essential tremor focusing on the change of tremor frequency. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 2244–2250.Google Scholar

  • [15]

    Medical Research Council. Aids to the investigation of peripheral nerve injuries. 2nd ed. London: Her Majesty’s Stationery Office, 1943.Google Scholar

  • [16]

    Micera S, Carpaneto J, Raspopovic S. Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 2010; 3: 48–68.CrossrefGoogle Scholar

  • [17]

    Müller-Putz GR, Daly I, Kaiser V. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy. J Neural Eng 2014; 11: 035011.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation/Brain-computer interfaces zur steuerung von neuroprothesen: von der synchronen zur asynchronen funktionsweise. Biomed Tech 2006; 51: 57–63.CrossrefGoogle Scholar

  • [19]

    Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 2005; 382: 169–174.Google Scholar

  • [20]

    Müller-Putz GR, Schreuder M, Tangermann M, Leeb R, Millán Del RJ. The hybrid brain-computer interface: a bridge to assistive technology? Biomed Tech (Berl) 2013; 58. doi: 10.1515/bmt-2013-4435.CrossrefGoogle Scholar

  • [21]

    Oldfield C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9: 97–113.CrossrefGoogle Scholar

  • [22]

    Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following self-paced movement. Electroencephalogr Clin Neurophysiol 1979; 46: 138–146.CrossrefGoogle Scholar

  • [23]

    Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C. Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 2000; 292: 211–214.Google Scholar

  • [24]

    Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rüdiger R. ‘Thought’-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 2003; 351: 33–36.Google Scholar

  • [25]

    Pons JL, Rocon E, Ceres R, et al. The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton Robot 2004; 16: 143–163.CrossrefGoogle Scholar

  • [26]

    Potvin JR. Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions. J Appl Physiol 1997; 82: 144–151.Google Scholar

  • [27]

    Ribeiro P, Brasil F, Witkowski M, et al. Controlling assistive machines in paralysis using brain waves and other biosignals. Adv Hum Comput Interact 2013;2013:369425.Google Scholar

  • [28]

    Rohm M, Schneiders M, Müller C, et al. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med 2013; 59: 133–142.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    Rupp R, Rohm M, Schneiders M, et al. Think2grasp – BCI-controlled neuroprosthesis for the upper extremity. Biomed Tech (Berl). 2013 (in press). doi: 10.1515/bmt-2013-4440.CrossrefGoogle Scholar

  • [30]

    Soekadar SR, Birbaumer N, Slutzky M, Cohen LG. Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol Dis 2015 (in press).CrossrefGoogle Scholar

  • [31]

    Soekadar SR, Cohen LG, Birbaumer N. Clinical brain-machine interfaces. In: Tracy J, Hampstead B, Sathian K, editors. Plasticity of cognition in neurologic disorders. New York: Oxford University Press 2015, Part 3, Chapter 15, pp. 347-361. ISBN: 978-0-19-996524-3.Google Scholar

  • [32]

    Soekadar SR, Witkowski M, Mellinger J, Ramos A, Birbaumer N, Cohen LG. ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance. IEEE TNSRE 2011;19: 542–549.Google Scholar

  • [33]

    Vitiello N, Lenzi T, Roccella S, et al. NEUROExos: A powered elbow exoskeleton of physical rehabilitation. IEEE Trans Robot 2013; 29: 220–235.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Surjo R. Soekadar, MD, Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany, Phone: +49-7071-29 82624, Fax: +49-7071-29 82625, E-mail:


Received: 2014-03-01

Accepted: 2014-11-17

Published Online: 2014-12-09

Published in Print: 2015-06-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 60, Issue 3, Pages 199–205, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2014-0126.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maged AL-Quraishi, Irraivan Elamvazuthi, Siti Daud, S. Parasuraman, and Alberto Borboni
Sensors, 2018, Volume 18, Number 10, Page 3342
[2]
Madiha Tariq, Pavel M. Trivailo, and Milan Simic
Frontiers in Human Neuroscience, 2018, Volume 12
[3]
Christoph Guger, José del R. Millán, Donatella Mattia, Junichi Ushiba, Surjo R. Soekadar, Vivek Prabhakaran, Natalie Mrachacz-Kersting, Kyousuke Kamada, and Brendan Z. Allison
Brain-Computer Interfaces, 2018, Page 1
[4]
Claudio Pacchierotti, Stephen Sinclair, Massimiliano Solazzi, Antonio Frisoli, Vincent Hayward, and Domenico Prattichizzo
IEEE Transactions on Haptics, 2017, Volume 10, Number 4, Page 580
[5]
Aaron J. Young, Hannah Gannon, and Daniel P. Ferris
Frontiers in Bioengineering and Biotechnology, 2017, Volume 5
[6]
Inchul Choi, Ilsun Rhiu, Yushin Lee, Myung Hwan Yun, Chang S. Nam, and Dewen Hu
PLOS ONE, 2017, Volume 12, Number 4, Page e0176674
[7]
S. R. Soekadar, M. Witkowski, C. Gómez, E. Opisso, J. Medina, M. Cortese, M. Cempini, M. C. Carrozza, L. G. Cohen, N. Birbaumer, and N. Vitiello
Science Robotics, 2016, Volume 1, Number 1, Page eaag3296
[8]
Maxwell D. Murphy, David J. Guggenmos, David T. Bundy, and Randolph J. Nudo
Frontiers in Cellular Neuroscience, 2016, Volume 9

Comments (0)

Please log in or register to comment.
Log in