Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 60, Issue 5

Issues

Volume 57 (2012)

Degradation of magnetic nanoparticles mimicking lysosomal conditions followed by AC susceptibility

Lucía GutiérrezORCID iD: http://orcid.org/0000-0003-2366-3598 / Sonia Romero
  • Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Department of Biomaterials and Bioinspired Materials, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gustavo B. da Silva
  • Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Department of Biomaterials and Bioinspired Materials, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
  • Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Centro, 24020-150, Niterói, RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rocío Costo
  • Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Department of Biomaterials and Bioinspired Materials, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria D. Vargas
  • Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Centro, 24020-150, Niterói, RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Célia M. Ronconi
  • Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Centro, 24020-150, Niterói, RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos J. Serna
  • Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Department of Biomaterials and Bioinspired Materials, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sabino Veintemillas-Verdaguer
  • Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Department of Biomaterials and Bioinspired Materials, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María del Puerto Morales
  • Corresponding author
  • Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Department of Biomaterials and Bioinspired Materials, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-02 | DOI: https://doi.org/10.1515/bmt-2015-0043

Abstract

Background: A deeper knowledge on the effects of the degradation of magnetic nanoparticles on their magnetic properties is required to develop tools for the identification and quantification of magnetic nanoparticles in biological media by magnetic means.

Methods: Citric acid and phosphonoacetic acid-coated magnetic nanoparticles have been degraded in a medium that mimics lysosomal conditions. Magnetic measurements and transmission electron microscopy have been used to follow up the degradation process.

Results: Particle size is reduced significantly in 24 h at pH 4.5 and body temperature. These transformations affect the magnetic properties of the compounds. A reduction of the interparticle interactions is observed just 4 h after the beginning of the degradation process. A strong paramagnetic contribution coming from the degradation products appears with time.

Conclusions: A model for the in vivo degradation of magnetic nanoparticles has been followed to gain insight on the changes of the magnetic properties of iron oxides during their degradation. The degradation kinetics is affected by the particle coating, in our case being the phosphonoacetic acid-coated particles degraded faster than the citric acid-coated ones.

Keywords: biomedical applications; iron oxides; maghemite; magnetic characterization

References

  • [1]

    Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 2005; 18: 383–389.CrossrefGoogle Scholar

  • [2]

    Bonnecaze R, Clements M. Magnetically driven flows of suspensions of rods to deliver clot-busting drugs to dead-end arteries. Bull Am Phys Soc 2014; 59: D9.7.Google Scholar

  • [3]

    Bradshaw M, Clemons T, Ho D, et al. Manipulating directional cell motility using intracellular superparamagnetic nanoparticles. Nanoscale 2015; 7: 4884–4889.Web of ScienceCrossrefGoogle Scholar

  • [4]

    Calero M, Gutiérrez L, Salas G, et al. Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomed Nanotechnol Biol Med 2014; 10: 733–743.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    Candido RRF, Favero V, Duke M, et al. The affinity of magnetic microspheres for Schistosoma eggs. Int J Parasitol 2015; 45: 43–50.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Chertok B, Cole AJ, David AE, Yang VC. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol Pharm 2009; 7: 375–385.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsulation 1996; 13: 245–255.CrossrefGoogle Scholar

  • [8]

    Colombo M, Carregal-Romero S, Casula MF, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012; 41:4306–4334.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    Costo R, Bello V, Robic C, et al. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Langmuir 2011; 28: 178–185.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Costo R, Morales MP, Veintemillas-Verdaguer S. Improving magnetic properties of ultrasmall magnetic nanoparticles by biocompatible coatings. J Appl Phys 2015; 117: 064311.Web of ScienceCrossrefGoogle Scholar

  • [11]

    Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006; 67: 55–60.CrossrefGoogle Scholar

  • [12]

    Gamarra LF. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials. Int J Nanomed 2010; 5: 203.CrossrefGoogle Scholar

  • [13]

    Garcia-Palacios J. On the statics and dynamics of magnetoanisotropic nanoparticles. Adv Chem Phys 2000; 112: 1–210.Google Scholar

  • [14]

    Gutierrez L, Costo R, Gruttner C, et al. Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans 2015; 44: 2943–2952.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    Gutiérrez L, Mejías R, Barber DF, et al. Ac magnetic susceptibility study of in vivo nanoparticle biodistribution. J Phys D: Appl Phys 2011; 44: 255002.Web of ScienceCrossrefGoogle Scholar

  • [16]

    Gutierrez L, Mejias R, Lazaro FJ, Serna CJ, Barber DF, Morales MP. Effect of anesthesia on magnetic nanoparticle biodistribution after intravenous injection. IEEE Trans Magn 2013; 49: 398–401.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Gutierrez L, Morales MP, Lazaro FJ. Prospects for magnetic nanoparticles in systemic administration: synthesis and quantitative detection. Phys Chem Chem Phys 2014; 16: 4456–4464.Web of ScienceCrossrefGoogle Scholar

  • [18]

    Hergt R, Dutz S, Müller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 2006; 18: S2919.Google Scholar

  • [19]

    Lartigue L, Alloyeau D, Kolosnjaj-Tabi J, et al. Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 2013; 7: 3939–3952.Web of ScienceCrossrefGoogle Scholar

  • [20]

    Lee J, Lilly GD, Doty RC, Podsiadlo P, Kotov NA. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009; 5: 1213–1221.Web of ScienceGoogle Scholar

  • [21]

    Lesieur S, Grabielle-Madelmont C, Ménager C, et al. Evidence of surfactant-induced formation of transient pores in lipid bilayers by using magnetic-fluid-loaded liposomes. J Am Chem Soc 2003; 125: 5266–5267.CrossrefGoogle Scholar

  • [22]

    Lévy M, Lagarde F, Maraloiu V-A, et al. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 2010; 21: 395103.Web of ScienceCrossrefGoogle Scholar

  • [23]

    López A, Gutiérrez L, Lázaro FJ. The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues. Phys Med Biol 2007; 52: 5043–5056.Web of ScienceCrossrefGoogle Scholar

  • [24]

    Martina M-S, Fortin J-P, Ménager C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 2005; 127: 10676–10685.CrossrefGoogle Scholar

  • [25]

    Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magnetics 1981; 17: 1247–1248.CrossrefGoogle Scholar

  • [26]

    Meddahi-Pellé A, Legrand A, Marcellan A, Louedec L, Letourneur D, Leibler L. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew Chem Int Ed 2014; 53: 6369–6373.Web of ScienceCrossrefGoogle Scholar

  • [27]

    Mejías R, Gutiérrez L, Salas G, et al. Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J Controlled Release 2013; 171: 225–233.Google Scholar

  • [28]

    Ruiz A, Hernández Y, Cabal C, et al. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale 2013; 5: 11400–11408.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    Sasaki T, Iwasaki N, Kohno K, et al. Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res A 2008; 86A: 969–978.Web of ScienceCrossrefGoogle Scholar

  • [30]

    Shinkai M, Le B, Honda H, et al. Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Jpn J Cancer Res 2001; 92: 1138–1146.CrossrefGoogle Scholar

  • [31]

    Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60: 1252–1265.Web of ScienceCrossrefGoogle Scholar

  • [32]

    Wiogo HTR, Lim M, Bulmus V, Gutiérrez L, Woodward RC, Amal R. Insight into serum protein interactions with functionalized magnetic nanoparticles in biological media. Langmuir 2012; 28: 4346–4356.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding authors: Lucía Gutiérrez and María del Puerto Morales, Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Department of Biomaterials and Bioinspired Materials, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain, Phone: +34 91 334 9000, E-mail: , .


Received: 2015-03-05

Accepted: 2015-05-07

Published Online: 2015-06-02

Published in Print: 2015-10-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 60, Issue 5, Pages 417–425, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2015-0043.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ana C. Bohórquez, Mythreyi Unni, Sayali Belsare, Andreina Chiu-Lam, Lori Rice, Christine Pampo, Dietmar Siemann, and Carlos Rinaldi
Bioconjugate Chemistry, 2018
[2]
Víctor Garcés, Alba Rodríguez-Nogales, Ana González, Natividad Gálvez, M. Elena Rodríguez-Cabezas, María L. García-Martin, Lucia Gutiérrez, Deyanira Rondón, Mónica Olivares, Julio Gálvez, and Jose M. Dominguez-Vera
Bioconjugate Chemistry, 2018
[3]
Grazyna Stepien, María Moros, Marta Pérez-Hernández, Marta Monge, Lucía Gutiérrez, Raluca M. Fratila, Marcelo de las Heras, Sebastián Menao Guillén, Juan José Puente Lanzarote, Conxita Solans, Julián Pardo, and Jesús Martínez de la Fuente
ACS Applied Materials & Interfaces, 2018
[4]
Evelyn C. da S. Santos, Amanda Watanabe, Maria D. Vargas, Marcelo N. Tanaka, Flavio Garcia, and Célia M. Ronconi
New Journal of Chemistry, 2018
[5]
José M. Rojas, Helena Gavilán, Vanesa del Dedo, Eduardo Lorente-Sorolla, Laura Sanz-Ortega, Gustavo B. da Silva, Rocío Costo, Sonia Perez-Yagüe, Marina Talelli, Marzia Marciello, M. Puerto Morales, Domingo F. Barber, and Lucía Gutiérrez
Acta Biomaterialia, 2017, Volume 58, Page 181
[6]
Sarah Briceño, Ana C. Hernandez, Juan Sojo, Luis Lascano, and Gema Gonzalez
Journal of Nanoparticle Research, 2017, Volume 19, Number 4
[7]
François Mazuel, Ana Espinosa, Guillaume Radtke, Matthieu Bugnet, Sophie Neveu, Yoann Lalatonne, Gianluigi A. Botton, Ali Abou-Hassan, and Claire Wilhelm
Advanced Functional Materials, 2017, Volume 27, Number 9, Page 1605997
[8]
Miguel Martín, Alba Rodríguez-Nogales, Víctor Garcés, Natividad Gálvez, Lucía Gutiérrez, Julio Gálvez, Deyanira Rondón, Mónica Olivares, and Jose M. Dominguez-Vera
Nanoscale, 2016, Volume 8, Number 32, Page 15041
[9]
François Mazuel, Ana Espinosa, Nathalie Luciani, Myriam Reffay, Rémi Le Borgne, Laurence Motte, Karine Desboeufs, Aude Michel, Teresa Pellegrino, Yoann Lalatonne, and Claire Wilhelm
ACS Nano, 2016, Volume 10, Number 8, Page 7627
[10]
Amalia Ruiz, Axel Mancebo, Lilianne Beola, Iliana Sosa, and Lucia Gutierrez
IEEE Magnetics Letters, 2016, Volume 7, Page 1

Comments (0)

Please log in or register to comment.
Log in