Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Volume 61, Issue 2


Volume 57 (2012)

Human-centered risk management for medical devices – new methods and tools

Armin Janß
  • Corresponding author
  • Helmholtz-Institute f. BME of the RWTH Aachen University, Chair of Medical Engineering, Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simon Plogmann
  • Helmholtz-Institute f. BME of the RWTH Aachen University, Chair of Medical Engineering, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaus Radermacher
  • Helmholtz-Institute f. BME of the RWTH Aachen University, Chair of Medical Engineering, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-17 | DOI: https://doi.org/10.1515/bmt-2014-0124


Studies regarding adverse events with technical devices in the medical context showed, that in most of the cases non-usable interfaces are the cause for use deficiencies and therefore a potential harm for the patient and third parties. This is partially due to the lack of suitable methods for interlinking usability engineering and human-centered risk management. Especially regarding the early identification of human-induced errors and the systematic control of these failures, medical device manufacturers and in particular the developers have to be supported in order to guarantee reliable design and error-tolerant human-machine interfaces (HMI). In this context, we developed the HiFEM methodology and a corresponding software tool (mAIXuse) for model-based human risk analysis. Based on a two-fold approach, HiFEM provides a task-type-sensitive modeling structure with integrated temporal relations in order to represent and analyze the use process in a detailed way. The approach can be used from early developmental stages up to the validation process. Results of a comparative study with the HiFEM method and a classical process-failure mode and effect analysis (FMEA) depict, that the new modeling and analysis technique clearly outperforms the FMEA. Besides, we implemented a new method for systematic human risk control (mAIXcontrol). Accessing information from the method’s knowledge base enables the operator to detect the most suitable countermeasures for a respective risk. Forty-one approved generic countermeasure principles have been indexed as a resulting combination of root causes and failures in a matrix. The methodology has been tested in comparison to a conventional approach as well. Evaluation of the matrix and the reassessment of the risk priority numbers by a blind expert demonstrate a substantial benefit of the new mAIXcontrol method.

Keywords: human-machine interaction; human-risk analysis; human-risk control; human errors; human error taxonomy; human factors; medical devices; model-based usability evaluation


  • [1]

    Asnar Y, Giorgini P. Modelling Risk Identifying Countermeasure in Organizations, Italy, CRITIS 2006, LNCS 4347. Berlin Heidelberg: Springer-Verlag 2006: 55–66.Google Scholar

  • [2]

    Bogner MS. Human error in medicine. Lawrence Erlbaum Associates 1994.Google Scholar

  • [3]

    Bubb H. Menschliche Zuverlässigkeit. Landsberg/Lech: ecomed 1992.Google Scholar

  • [4]

    CARAD. Computer Aided Risk Analysis and Documentation, A Software-tool for Risk Analysis and Documentation; SurgiTAIX AG. 2012 http://www.surgitaix.com/cms/index.php. Accessed on 24 January, 2016.

  • [5]

    Card SK, Moran TP, Newell A.. The psychology of Human-Computer-Interaction. Hillsdale, New Jersey: Lawrence Erlbaum Associates 1983.Google Scholar

  • [6]

    Cook RI, Woods DD. Adapting to the new technology in the operating room. Hum Factors 1996; 38: 593–613.Google Scholar

  • [7]

    Diaper D, Stanton N. The handbook of task analysis for human-computer interaction. London: Lawrence Erlbaum Associates 2004.Google Scholar

  • [8]

    DIN EN 14971. Medical devices – Application of risk management to medical devices (ISO14971:2008). German version EN ISO 14971:2001, Beuth Verlag GmbH, 10772 Berlin 2008.Google Scholar

  • [9]

    Gawande AA, Thomas EJ, Zinner MJ, Brennan TA. The incidence and nature of surgical adverse events in Colorado and Utah in 1992. Surgery 1999; 126: 66–75.Google Scholar

  • [10]

    Giesa HG, Timpe KP. Technisches Versagen und menschliche Zuverlässigkeit: Bewertung der Zuverlässigkeit in Mensch-Maschine-Systemen. In: Timpe KP, Jürgensohn T, Kolrep H, editors. Mensch-Maschine-Systemtechnik. Düsseldorf: Symposion Publishing 2000.Google Scholar

  • [11]

    Gray WD, John BE, Atwood ME. The precis of Project Ernestine or an overview of a validation of GOMS. Proceedings of CHI, ACM, New York 1992: 307–312.Google Scholar

  • [12]

    Hacker W. Allgemeine Arbeitspsychologie. Bern: Huber 1998.Google Scholar

  • [13]

    Hansis ML. Medizinische Behandlungsfehler in Deutschland. Schleswig-Holsteinisches Ärzteblatt 2002; 06/02: 51–59.Google Scholar

  • [14]

    Hansis ML, Hart D, Hansis DE, Becker-Schwarze K. Gesundheitsberichterstattung des Bundes. Heft 04/01: Medizinische Behandlungsfehler. Robert-Koch-Institut 2001.Google Scholar

  • [15]

    Hoffmann K. Risk Management – Neue Wege der betrieblichen Risikopolitik. Verlag Versicherungswirtschaft, Karlsruhe 1985.Google Scholar

  • [16]

    Hollnagel, E. Reliability and safety analysis: Context and control. London: Academic. Reliability Engineering & System Safety 1996; 52: 327–337.Google Scholar

  • [17]

    Hyman WA. Errors in the use of medical equipment. In: Bogner MS, editor. Human error in medicine. Hillsdale NJ: Erlbaum Publ 1994.Google Scholar

  • [18]

    IEC 62366. Application of usability engineering to medical devices. Beuth Verlag GmbH, 10772 Berlin 2007.Google Scholar

  • [19]

    Janß A, Benzko J, Merz P, Dell’Anna J, Strake M, Radermacher K. Development of Medical Device UI-Profiles for Reliable and Safe Human-Machine-Interaction in the Integrated Operating Room of the Future – Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics 2014, 2014: 1855–1860.Google Scholar

  • [20]

    Janß A, Lauer W, Radermacher K. Bewertung sicherheitskritischer Systeme im OP. In: Ziegler J, Preim P, Korb W. (Hrsg.). Zeitschrift für interaktive und kooperative Medien (i-com), Themenschwerpunkt: Mensch-Computer-Interaktion im Operationssaal. München: Oldenbourg Wissenschaftsverlag GmbH, 2009: 8, Nr. 1, S. 32–37.Google Scholar

  • [21]

    John BE, Gray WD. CPM-GOMS – an analysis method for tasks with parallel activities. In: Conference companion on Human factors in computing systems. NY: ACM Press 1995: 393–394.Google Scholar

  • [22]

    Kayis B, Arndt G, Zhou M, Amornsawadwatana S. An Intelligent Risk Mapping and Assessment System (IRMAS™). A Risk Mitigation Methodology for New Product and Process Design in Concurrent Engineering Projects Annals of the CIRP Vol. 56/1/2007 Elsevier 2007.Google Scholar

  • [23]

    Kindler M. Risikomanagement von medizintechnischen Geräten bei Entwicklung, Zulassung und Anwendung. Weiterentwicklung der Arbeitsprozesse in der Krankenhaustechnik. Strategien, Administration, Kooperation. Kongress TK 2003.Google Scholar

  • [24]

    Kohn LT, Corrigan J, Donaldson MS. To err is human: building a safer health system. Washington, DC: National Academy Press 2000.Google Scholar

  • [25]

    Kraiss K-F. Modellierung von Mensch-Maschine Systemen. In: Willumeit HP, Kolrep H,editors. ZMMS-Spektrum, Band 1, Verlässlichkeit von Mensch-Maschine-Systemen. Pro Universitate Verlag 1995: 15–35.Google Scholar

  • [26]

    Leape LL. The Preventability of medical injury. In: Bogner MS, (Hrsg.). Human error in medicine. Hillsdale NJ: Erlbaum Publ 1994.Google Scholar

  • [27]

    Merten M. Risikomanagement: Den Ursachen auf der Spur. Deutsches Ärzteblatt. Deutscher Ärzte-Verlag GmbH 2007.Google Scholar

  • [28]

    Paternò F, Mancini C, Meniconi S. ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. Proc. of IFIP Int. Conf. on Human-Computer Interaction Interact’97 Sydney, Chapman & Hall, London, 1997: 362–369.Google Scholar

  • [29]

    Pfeifer T. Qualitätsmanagement: Strategien, Methoden, Techniken. München: Carl Hanser Verlag 2001.Google Scholar

  • [30]

    Radermacher K, Zimolong A, Stockheim M, Rau G. Analysing reliability of surgical planning and navigation systems. In: Lemke HU, Vannier MW, editors. International Congress Series 1268 2004: 824–829.Google Scholar

  • [31]

    Radermacher K. Computerunterstützte Operationsplanung und -ausführung mittels individueller Bearbeitungsschablonen in der Orthopädie. In: Rau G, editor. Berichte aus der Biomedizinischen Technik. Aachen: Shaker 1999.Google Scholar

  • [32]

    Rasmussen J. Skills, Rules, Knowledge: Signals, Signs, Symbols and other Distinctions in Human Performance Models. IEEE Trans. Systems, Man and Cybernetics. 1987; SMC-3: 257–267.Google Scholar

  • [33]

    Rasmussen J, Pejtersen AM, Goodstein LP. Cognitive systems engineering. New York: Wiley-Interscience Publications 1994.Google Scholar

  • [34]

    Rau G, Radermacher K, Thull B, Von Pichler C. Aspects of ergonomic system design applied to medical worksystems. In: Taylor RH, editors. Computer-integrated surgery: technology and clinical applications. Cambridge, MA: MIT Press 1996: 203–221.Google Scholar

  • [35]

    Reason J. Human error. Cambridge: Cambridge University Press 1990.Google Scholar

  • [36]

    Reason JT. Generic error-modelling system (GEMS). A cognitive framework for locating human error forms. In: Rasmussen J, Duncan K, Leplat J, editors. New technology and human error. London: Wiley 1987.Google Scholar

  • [37]

    Sawik TJ. Selection of optimal countermeasure portfolio in IT security planning. Decis Support Syst 2013; 55: 156–164.Google Scholar

  • [38]

    Schmitt RH, Rauchenberger J, Radermacher K, Lauer W, JanßA. Neue Wege für das Risikomanagement bei der Entwicklung risikosensitiver Produkte am Beispiel der Medizintechnik. In: FQS, editor. FQS-DGQ Band 88-04, Beuth Verlag 2009.Google Scholar

  • [39]

    VDA. Sicherung der Qualität vor Serieneinsatz-Produkt- und Prozess-FMEA, Henrich Druck und Medien 2006.Google Scholar

  • [40]

    VDI 4006-2 Menschliche Zuverlässigkeit, Methoden zur quantitativen Bewertung menschlicher Zuverlässigkeit „VDI 4006-Teil2“ Zu beziehen durch / Available from Beuth Verlag GmbH, 10772 Berlin 2003.Google Scholar

  • [41]

    Viduto V, MapleC, Huang W, López-Peréz D. A novel risk assessment and optimisation model for a multi-objective network security countermeasure selection problem. Decis Support Syst 2012; 53: 599–610, Elsevier.Web of ScienceGoogle Scholar

  • [42]

    Woods DD, Cook RI, Billings CE. The impact of technology on physician cognition and performance. J Clin Monit 1995; 11: 5–8.Google Scholar

About the article

Corresponding author: Armin Janß, Helmholtz-Institute f. BME of the RWTH Aachen University, Chair of Medical Engineering, Aachen, Germany

Received: 2014-10-12

Accepted: 2016-01-25

Published Online: 2016-03-17

Published in Print: 2016-04-01

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 61, Issue 2, Pages 165–181, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2014-0124.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in