Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

See all formats and pricing
More options …
Volume 61, Issue 6


Volume 57 (2012)

Remote vital parameter monitoring in neonatology – robust, unobtrusive heart rate detection in a realistic clinical scenario

Nikolai Blanik
  • Corresponding author
  • Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Konrad Heimann
  • Department of Neonatology, University Children’s Hospital, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carina PereiraORCID iD: http://orcid.org/0000-0003-1788-4562 / Michael Paul
  • Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Blazek
  • Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • The Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boudewijn Venema
  • Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thorsten Orlikowsky
  • Department of Neonatology, University Children’s Hospital, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Steffen Leonhardt
  • Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-15 | DOI: https://doi.org/10.1515/bmt-2016-0025


Vital parameter monitoring of term and preterm infants during incubator care with self-adhesive electrodes or sensors directly positioned on the skin [e.g. photoplethysmography (PPG) for oxygen saturation or electrocardiography (ECG)] is an essential part of daily routine care in neonatal intensive care units. For various reasons, this kind of monitoring contains a lot of stress for the infants. Therefore, there is a need to measure vital parameters (for instance respiration, temperature, pulse, oxygen saturation) without mechanical or conductive contact. As a non-contact method of monitoring, we present an adapted version of camera-based photoplethysmography imaging (PPGI) according to neonatal requirements. Similar to classic PPG, the PPGI camera detects small temporal changes in the term and preterm infant’s skin brightness due to the cardiovascular rhythm of dermal blood perfusion. We involved 10 preterm infants in a feasibility study [five males and five females; mean gestational age: 26 weeks (24–28 weeks); mean biological age: 35 days (8–41 days); mean weight at the time of investigation: 960 g (670–1290 g)]. The PPGI camera was placed directly above the incubators with the infant inside illuminated by an infrared light emitting diode (LED) array (850 nm). From each preterm infant, 5-min video sequences were recorded and analyzed post hoc. As the measurement scenario was kept as realistic as possible, the infants were not constrained in their movements in front of the camera. Movement intensities were assigned into five classes (1: no visible motion to 5: heavy struggling). PPGI was found to be significantly sensitive to movement artifacts. However, for movement classes 1–4, changes in blood perfusion according to the heart rate (HR) were recovered successfully (Pearson correlation: r=0.9759; r=0.765 if class 5 is included). The study was approved by the Ethics Committee of the Universal Hospital of the RWTH Aachen University, Aachen, Germany (EK 254/13).

Keywords: grid analysis; image post-processing algorithms; motion artifact compensation; photoplethysmography imaging; remote sensing; robust heart rate recognition; term and preterm infants; vital parameter monitoring


  • [1]

    Abbas KA, Heimann K, Jergus K, Orlikowsky T, Leonhardt S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed Eng Online 2011;10:93.CrossrefWeb of SciencePubMedGoogle Scholar

  • [2]

    Abbas KA, Heimann K, Orlikowsky T, Leonhardt S. Neonatal infrared tomography imaging: analysis of heat flux during different clinical scenarios. Infrared Phys Technol 2012;55: 538–548.CrossrefGoogle Scholar

  • [3]

    Bartocci M, Bergqvist LL, Lagercrantz H, Anand KJ. Pain activates cortical areas in the preterm newborn brain. Pain 2006;122:109–117.CrossrefPubMedGoogle Scholar

  • [4]

    Blanik N. Remote space- and time resolved skin perfusion detection using Photoplethysmography Imaging (PPGI). In [41], 175–203.

  • [5]

    Blanik N, Pereira C, Czaplik M, Blazek V, Leonhardt S. Remote photopletysmographic imaging of dermal perfusion in a porcine animal model. The 15th International Conference on Biomedical Engineering, IFMBE Proceedings Vol. 43, 2014:92–95, doi: .CrossrefGoogle Scholar

  • [6]

    Blanik N, Venema B, Blazek V, Leonhardt S. Remote pulse oximetry imaging – fundamentals and applications. Lékař a technika – Clinician and Technology 2014;3:5–11.Google Scholar

  • [7]

    Blazek V, Kumar VJ, Leonhardt S, Rao MM. Studies in skin perfusion dymacis – photoplethysmography and its applications in medical diagnostics. India: Springer, in press.Google Scholar

  • [8]

    Cennini G, Arguel J, Akşit K, Van Leest A. Heart rate monitoring via remote photoplethysmography with motion artifacts reduction. Opt Express 2010;18:4867–4875.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [9]

    Cordes A, Foussier J, Pollig D, Leonhardt S. A portable magnetic induction measurement system (PIMS). Biomed Technik 2012;57:131–138.Web of ScienceGoogle Scholar

  • [10]

    Cordes A, Heimann K, Leonhardt S. Magnetic induction measurements with a six channel coil array for vital parameter monitoring. Conf Proc IEEE Eng Med Biol Soc 2012;2012: 602–604.PubMedGoogle Scholar

  • [11]

    Cordes A, Leonhardt S. Development of the new Multichannel Simultaneous Magnetic Induction Measurement System (MUSIMITOS 2+). 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, IFMBE Proceedings Volume 17, Bath, England, 2007:448–451.Google Scholar

  • [12]

    DIN EN 60601-2-21:1995-12: Medical electrical equipment - part 2-21: Particular requirements for the basic safety and essential performance of infant radiant warmers, ISO IEC 60601-2-21:1994.

  • [13]

    Estepp JR, Blackford EB, Meier CM. Recovering pulse rate during motion artifact with a multi-imager array for non-contact imaging photoplethysmography. IEEE International Conference on Systems, Man and Cybernetics (SMC), 2014:1462–1469, doi: .CrossrefGoogle Scholar

  • [14]

    Foreman SW, Thomas KA, Blackburn ST. Individual and gender differences matter in preterm infant state development. J Obstet Gynecol Neonatal Nurs 2008;37:657–665.CrossrefPubMedGoogle Scholar

  • [15]

    Froelicher V, Myers J. Exercise and the Heart. Philadelphia: Elsevier 2006:ix, 108–112. ISBN 1-4160-0311-8.Google Scholar

  • [16]

    Heimann K, Blanik N, Pereira C, Wester MK, Blazek V, Orlikowsky T. Photoplethysmographie Imaging (PPGI) – Eine kontaktlose Mess-Methode zur funktionellen Erfassung der lokalen Hämodynamik des Frühgeborenen. 41. Jahrestagung der Gesellschaft für Neonatologie und Pädiatrische Intensivmedizin, Stuttgart, 21.-23. Mai 2015.

  • [17]

    Heimann K, Ebert AM, Abbas A, Heussen N, Leonhardt S, Orlikowsky T. Thermoregulation of premature infants during and after Skin-to-Skin Care. Z Geburtsh Neonatol 2013;217:220–224.Google Scholar

  • [18]

    Heimann K, Jergus K, Abbas A, Heussen N, Leonhardt S, Orlikowsky T. Infrared thermography for detailed registration of thermoregulation in premature infants. J Perinat Med 2013;41:613–620.Web of SciencePubMedGoogle Scholar

  • [19]

    Heimann K, Steffen M, Bernstein N, et al. Kontaktlose Überwachung von Atemtätigkeit und Herzaktion mittels Magnetischer Bioimpedanzmessung im Neugeborenen-Tiermodell. Biomedizinische Technik 2009;54:337–345.CrossrefGoogle Scholar

  • [20]

    Hülsbusch M. A functional imaging technique for optoelectronic assessment of skin perfusion. Ph.D. Thesis, RWTH Aachen University, Germany (2008).Google Scholar

  • [21]

    Hülsbusch M, Blazek V. Contactless mapping of rhythmical phenomena in tissue perfusion using PPGI. Proc SPIE Vol. 4683 2002:110–117.CrossrefGoogle Scholar

  • [22]

    Huppertz-Kessler CJ, Verveuer D, Pöschl J. Intensivmedizinisches Reizumfeld und Stressoren – welchen Einfluss haben sie auf die Gehirnentwicklung frühgeborener Kinder? Klin Padiatr 2010;222:236–242.Google Scholar

  • [23]

    Köny M. Entscheidungsunterstützungssysteme für den anästhesiologischen Arbeitsplatz der Zukunft auf Basis vernetzter Medizingeräte. Ph.D. Thesis, RWTH Aachen University, Germany (2015).Google Scholar

  • [24]

    Latini G, Dipaola L, De Felice C. First day of life reference values for pleth variability index in spontaneously breathing term newborns. Neonatology 2011;101:179–182.Web of SciencePubMedGoogle Scholar

  • [25]

    Lee H, Rusin CG, Lake ED, et al. A new algorithm for detecting central apnoea in neonates. Physiol Meas 2012;33:1–17.CrossrefPubMedGoogle Scholar

  • [26]

    Lentner C. Heart and Circulation. In: Lentner C, editor. Geigy scientific tables, Vol. 5, Basel, 1990.Google Scholar

  • [27]

    Marlier L, Gaugler C, Messer J. Olfactory stimulation prevents apneea in premature newborns. Pediatrics 2005;115:83–88.CrossrefGoogle Scholar

  • [28]

    Mirmiran M, Baldwin RB, Ariagno RL. Circardian and sleep development in preterm infants occurs indepently from the influences of environmental lightning. Pediatr Res 2003;53:993–938.Google Scholar

  • [29]

    Nöcker-Ribaupierre M. Hrgs. Hören – Brücke ins Leben. Musiktherapie mit früh- und neugeborenen Kindern. Forschung und klinische Praxis. Vandenhoeck & Ruprecht, Göttingen; 2003.Google Scholar

  • [30]

    Obladen M, Maier RF, Stiller B. Neugeborenenintensivmedizin: Evidenz und Erfahrung. Heidelberg: Springer 2006.Google Scholar

  • [31]

    Philbin MK. The influence of auditory experience on the behaviour of newborn infants. J Perinatol 2000;20:S77–S87.CrossrefGoogle Scholar

  • [32]

    Poets CF, von Bodman A. Placing preterm infants for sleep: first prone, then supine. Arch Dis Child Fetal Neonatal Ed 2007;92:F331–F332.Google Scholar

  • [33]

    Roos R, Genzel-Boroviczény O, Proquitté H. Checkliste Neonatologie. Stuttgart, Germany: George Thieme Verlag 2015.Google Scholar

  • [34]

    Sato S, Ishida-Nakajima W, Ishida A, et al. Assessment of a new piezoelectric transducer sensor for non-invasive cardiorespiratory monitoring of newborn infants in the NICU. Neonatology 2010;98:179–119.CrossrefGoogle Scholar

  • [35]

    Steffen M, Leonhardt S. Non-contact monitoring of heart and lung activity by magnetic impedance measurement, 39. Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik, Nürnberg 2005.Google Scholar

  • [36]

    Steffen M, Heimann K, Bernstein N, Gonzalo D, Leonhardt S. Kontaktloses Monitoring von Vitalparametern bei Neugeborenen, 41. Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik im VDE – BMT 2007, Aachen.Google Scholar

  • [37]

    Steffen M, Heimann K, Bernstein N, Leonhardt S. Multichannel simultaneous magnetic induction measurement system (MUSIMITOS). Physiological Measurement 2008;29:291–306.CrossrefWeb of ScienceGoogle Scholar

  • [38]

    Teichmann D, Kuhn A, Leonhardt S, Walter M. The MAIN Shirt: a textile-integrated magnetic induction sensor array. Sensors 2014;14:1039–1056.CrossrefWeb of ScienceGoogle Scholar

  • [39]

    Webster JG. Design of pulse oxymeters. London: Institute of Physics Publishing, The Institute of Physics 1997.Google Scholar

  • [40]

    Wieringa FP, Mastik F, van der Steen AFW. Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology. Ann Biomed Eng 2005;33:1034–1041.CrossrefPubMedGoogle Scholar

  • [41]

    Wu T. PPGI: new development in noninvasive and contactless diagnosis of dermal perfusion using near infrared light. J GCPD e.V. 2003;7:17–24.Google Scholar

  • [42]

    Wu T, Blazek V, Schmitt HJ. Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes. Proc SPIE 2000;4163:62–70.CrossrefGoogle Scholar

  • [43]

    Yu C, Liu Z, McKenna T, Reisner AT, Reifman J. A method for automatic identification of reliable heart rates calculated from ECG and PPG waveforms. J Am Med Inform Assoc 2006;13:309–320.CrossrefPubMedGoogle Scholar

About the article

aNikolai Blanik and Konrad Heimann: These authors contributed equally to this work.

Received: 2016-01-25

Accepted: 2016-09-01

Published Online: 2016-10-15

Published in Print: 2016-12-01

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 61, Issue 6, Pages 631–643, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0025.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Carina Barbosa Pereira, Michael Czaplik, Vladimir Blazek, Steffen Leonhardt, and Daniel Teichmann
Sensors, 2018, Volume 18, Number 5, Page 1541

Comments (0)

Please log in or register to comment.
Log in