Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 62, Issue 2

Issues

Volume 57 (2012)

A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing

So-Hyun Jansen-Park
  • Corresponding author
  • Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany, Phone: +49 24180 82144, Fax: +49 24180 88764
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Po-Lin Hsu
  • Artificial Organ Technology Laboratory, Biomufacturing Centre, School of Mechanical and Electric Engineering, Soochow University, Jiangsu, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Indra Müller / Ulrich Steinseifer / Dirk Abel / Rüdiger Autschbach
  • Department of Cardiothoracic and Vascular Surgery, University Hospital Aachen, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rolf Rossaint / Thomas Schmitz-Rode
Published Online: 2017-04-04 | DOI: https://doi.org/10.1515/bmt-2016-0106

Abstract

Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°–26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.

Keywords: aramid fiber; cardiovascular device testing; compliance; mock circulation loop; mock heart; ventricle torsion

References

  • [1]

    Baloa LA, Boston JR, Antaki JF. Elastance-based control of a mock circulatory system. Ann Biomed Eng 2001; 29: 244–251.PubMedCrossrefGoogle Scholar

  • [2]

    Burns AT, McDonald IG, Thomas, JD, Macisaac A, Prior D. Doin’the twist: new tools for an old concept of myocardial function. Heart 2008; 94: 978–983.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [3]

    Colacino FM, Moscato F, Piedimonte F, Danieli G, Nicosia S, Arabia M. A modified elastance model to control mock ventricles in real-time: numerical and experimental validation. ASAIO J 2008, 54, 563–573.CrossrefWeb of SciencePubMedGoogle Scholar

  • [4]

    Cuenca-Navalon E, Finocchiaro T, Laumen M, Fritschi A, Schmitz-Rode T, Steinseifer U. Design and evaluation of a hybrid mock circulatory loop for total artificial heart testing. Int J Artif Organs 2014; 1: 71–80.Web of ScienceGoogle Scholar

  • [5]

    Esch B, Warburton T, Darren ER. Left ventricular torsion and recoil: implications for exercise performance and cardiovascular disease. J Appli Physiol 2009; 106: 362–369.CrossrefGoogle Scholar

  • [6]

    Ferrari G, Kozarski M, Zieliński K, et al. A modular computational circulatory model applicable to VAD testing and training. J Artif Organs 2012; 15: 32–43.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [7]

    Fiore G, Redaelli A, Rasponi M, Fumero R. Development of a model left ventricle with physiologic-like diastolic behaviour for studying mitral valve surgical correction. Summer Bioengineering Conference, Sonesta Beach Resort in Key Biscayne, Florida June 2003.Google Scholar

  • [8]

    Gwak KW, Paden BE, Antaki JF, Ahn I-S. Experimental verification of the feasibility of the cardiovascular impedance simulator. IEEE Trans Biomed Eng 2010; 57: 1176–1183.CrossrefWeb of SciencePubMedGoogle Scholar

  • [9]

    Jansen-Park SH, Mahmood MN, Müller I, et al. Effects of interaction between ventricular assist device assistance and autoregulated mock circulation including frank-starling mechanism and baroreflex. Artif Organs 2016; 40: 981–991.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [10]

    Knierbein B, Reul H, Eilers R, Lange M, Kaufmann R, Rau G. Compact mock loops of the systemic and pulmonary circulation for blood pump testing. Int J Artif Organs 1992; 15: 40–48.PubMedGoogle Scholar

  • [11]

    Laumen M, Kaufmann T, Timms D, et al. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif Organs 2010; 34: 798–806.Web of ScienceCrossrefPubMedGoogle Scholar

  • [12]

    Liu Y, Allaire P, Wu Y, Wood H, Olsen D. Construction of an artificial heart pump performance test system. Cardiovasc Eng 2006; 6: 151–158.CrossrefPubMedGoogle Scholar

  • [13]

    Nagel E, Stuber M, Burkhard B, et al. Cardiac rotation and relaxation in patients with aortic valve stenosis. Eur Heart Jl 2000; 21: 582–589.CrossrefGoogle Scholar

  • [14]

    Nakatani S. Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound 2011; 19: 1–6.CrossrefPubMedGoogle Scholar

  • [15]

    Ochsner G, Amacher R, Amstutz A, et al. A novel interface for hybrid mock circulations to evaluate ventricular assist devices. IEEE Trans Biomed Eng 2013; 60: 507–516.CrossrefWeb of SciencePubMedGoogle Scholar

  • [16]

    Pantalos GM, Koenig SC, Gillars KJ, Giridharan GA, Ewert DL. Characterization of an adult mock circulation for testing cardiac support devices. ASAIO J 2004; 50: 37–46.PubMedCrossrefGoogle Scholar

  • [17]

    Pedrizzetti G, Martiniello AR, Bianchi V, D’Onofrio A, Caso P, Tonti G. Cardiac fluid dynamics anticipates heart adaptation. J Biomech 2015; 48: 388–391.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [18]

    Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 1974; 35: 117–126.CrossrefPubMedGoogle Scholar

  • [19]

    Timms DL, Gregory SD, Greatrex NA, Pearcy MJ, Fraser JF, Steinseifer U. A compact mock circulation loop for the in vitro testing of cardiovascular devices. Artif Organs 2011; 35: 384–391.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [20]

    Timms D, Hayne M, McNeil K, Galbraith A. A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices. Artif Organs 2005; 29: 64–72.Google Scholar

  • [21]

    Tse KM, Chang R, Lee HP, Lim SP, Venkatesh SK, Ho P. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics. Eur J Cardiothorac Surg 2013; 43: 829–838.PubMedCrossrefGoogle Scholar

  • [22]

    Westermann D, Kasner M, Steendijk P, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 2008; 117: 2051–2060.Web of SciencePubMedCrossrefGoogle Scholar

  • [23]

    Yokoyama Y, Kawaguchi O, Shinshi T, Steinseifer U, Takatani S. A new pulse duplicator with a passive fill ventricle for analysis of cardiac dynamics. J Artif Organs 2010; 13: 189–196.Web of SciencePubMedCrossrefGoogle Scholar

About the article

Received: 2016-05-03

Accepted: 2017-03-01

Published Online: 2017-04-04

Published in Print: 2017-04-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 62, Issue 2, Pages 139–148, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0106.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in