Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 2

Issues

Volume 57 (2012)

Increased beat-to-beat T-wave variability in myocardial infarction patients

Muhammad A. Hasan
  • Corresponding author
  • Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada
  • Department of Electrical and Electronics Engineering, The University of Adelaide, Adelaide, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Derek Abbott
  • Department of Electrical and Electronics Engineering, The University of Adelaide, Adelaide, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mathias Baumert
  • Department of Electrical and Electronics Engineering, The University of Adelaide, Adelaide, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sridhar Krishnan
Published Online: 2016-12-21 | DOI: https://doi.org/10.1515/bmt-2015-0186

Abstract

The purpose of this study was to investigate the beat-to-beat variability of T-waves (TWV) and to assess the diagnostic capabilities of T-wave-based features for myocardial infarction (MI). A total of 148 recordings of standard 12-lead electrocardiograms (ECGs) from 79 MI patients (22 females, mean age 63±12 years; 57 males, mean age 57±10 years) and 69 recordings from healthy subjects (HS) (17 females, 42±18 years; 52 males, 40±13 years) were studied. For the quantification of beat-to-beat QT intervals in ECG signal, a template-matching algorithm was applied. To study the T-waves beat-to-beat, we measured the angle between T-wave max and T-wave end with respect to Q-wave (∠α) and T-wave amplitudes. We computed the standard deviation (SD) of beat-to-beat T-wave features and QT intervals as markers of variability in T-waves and QT intervals, respectively, for both patients and HS. Moreover, we investigated the differences in the studied features based on gender and age for both groups. Significantly increased TWV and QT interval variability (QTV) were found in MI patients compared to HS (p<0.05). No significant differences were observed based on gender or age. TWV may have some diagnostic attributes that may facilitate identifying patients with MI. In addition, the proposed beat-to-beat angle variability was found to be independent of heart rate variations. Moreover, the proposed feature seems to have higher sensitivity than previously reported feature (QT interval and T-wave amplitude) variability for identifying patients with MI.

Keywords: electrocardiogram (ECG); QT interval; repolarization; T-wave alternans; T-wave

References

  • [1]

    Adam DR, Smith JM, Akselrod S, Nyberg S, Powell AO, Cohen RJ. Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J Electrocardiol 1984; 17: 209–218.CrossrefPubMedGoogle Scholar

  • [2]

    Andersen MP, Xue JQ, Graff C, Kanters JK, Toft E, Struijk JJ. New descriptors of T-wave morphology are independent of heart rate. J Electrocardiol 2008; 41: 557–561.Web of SciencePubMedCrossrefGoogle Scholar

  • [3]

    Baumert M, Porta A, Vos MA, et al. QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace 2016; 18: 925–944.Web of ScienceGoogle Scholar

  • [4]

    Baumert M, Schlaich MP, Nalivaiko E, et al. Relation between QT interval variability and cardiac sympathetic activity in hypertension. Am J Physiol Heart Circ Physiol 2011; 300: H1412–H1417.Web of ScienceGoogle Scholar

  • [5]

    Berger RD, Kasper EK, Baughman KL, Marban E, Calkins H, Tomaselli GF. Beat-to-beat QT interval variability novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 1997; 96: 1557–1565.CrossrefPubMedGoogle Scholar

  • [6]

    Bidoggia H, Maciel JP, Capalozza N, et al. Sex-dependent electrocardiographic pattern of cardiac repolarization. American Heart J 2000; 140: 430–436.CrossrefGoogle Scholar

  • [7]

    Blanco-Velasco M, Cruz-Roldán F, Godino-Llorente JI, Barner KE. Nonlinear trend estimation of the ventricular repolarization segment for T-wave alternans detection. IEEE Trans Biomed Eng 2010; 57: 2402–2412.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [8]

    Burattini L, Bini S, Burattini R. Automatic microvolt T-wave alternans identification in relation to ECG interferences surviving preprocessing. Med Eng Phys 2011; 33: 17–30.Web of ScienceCrossrefPubMedGoogle Scholar

  • [9]

    Carney RM, Freedland KE, Stein PK, et al. Effects of depression on QT interval variability after myocardial infarction. Psychosom Med 2003; 65: 177–180.CrossrefPubMedGoogle Scholar

  • [10]

    Couderc JP, Zareba W, McNitt S, Maison-Blanche P, Moss AJ. Repolarization variability in the risk stratification of MADIT II patients. Europace 2007; 9: 717–723.Web of SciencePubMedCrossrefGoogle Scholar

  • [11]

    Couderc JP. Cardiac regulation and electrocardiographic factors contributing to the measurement of repolarization variability. J Electrocardiol 2009; 42: 494–499.Web of SciencePubMedCrossrefGoogle Scholar

  • [12]

    Donoiu I, Mirea OC, Giuca A, Militaru C, Ionescu DD. Post-myocardial infarction arrhythmia risk stratification using microvolt T-wave alternans. Curr Health Sci J 2012; 38: 65–68.PubMedGoogle Scholar

  • [13]

    Gambill CL, Wilkins ML, Haisty WK, et al. T-wave amplitudes in normal populations: variation with ECG lead, sex, and age. J Electrocardiol 1995; 28: 191–197.PubMedCrossrefGoogle Scholar

  • [14]

    Gold MR, Bloomfield DM, Anderson KP, et al. A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol 2000; 36: 2247–2253.PubMedCrossrefGoogle Scholar

  • [15]

    Gómez AM, Guatimosim S, Dilly KW, Vassort G, Lederer WJ. Heart failure after myocardial infarction altered excitation-contraction coupling. Circulation 2001; 104: 688–693.PubMedCrossrefGoogle Scholar

  • [16]

    Hasan MA, Abbott D. A review of beat-to-beat vectorcardiographic (VCG) parameters for analyzing repolarization variability in ECG signals. Biomed Tech (Berl) 2016; 61: 3–17.PubMedGoogle Scholar

  • [17]

    Hasan MA, Abbott D, Baumert M. Beat-to-beat vectorcardiographic analysis of ventricular depolarization and repolarization in myocardial infarction. PLoS One 2012; 7: e49489.Web of SciencePubMedCrossrefGoogle Scholar

  • [18]

    Hasan MA, Abbott D, Baumert M. Relation between beat-to-beat QT interval variability and T-Wave amplitude in healthy subjects. Ann Noninvasive Electrocardiol 2012; 17: 195–203.Web of ScienceCrossrefPubMedGoogle Scholar

  • [19]

    Hasan MA, Abbott D, Baumert M. Beat-to-beat QT interval variability and T-wave amplitude in patients with myocardial infarction. Physiol Meas 2013; 34: 1075–1083.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [20]

    Hasan MA, Chauhan VS, Krishnan S. Beat-to-beat T-wave alternans detection using the Ensemble Empirical Mode Decomposition method. Comput Biol Med 2016; 77: 1–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [21]

    Hasan MA, Starc V, Porta A, Abbott D, Baumert M. Improved ECG pre-processing for beat-to-beat QT interval variability measurement, in Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 2563–2566.PubMedGoogle Scholar

  • [22]

    Hohnloser SH, Klingenheben T, Li YG, Zabel M, Peetermans J, Cohen RJ. T-wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: prospective comparison with conventional risk markers. J Cardiovasc Electrophysiol 1998; 9: 1258–1268.CrossrefPubMedGoogle Scholar

  • [23]

    Ikeda T, Saito H, Tanno K, et al. T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am J Cardiol 2002; 89: 79–82.PubMedCrossrefGoogle Scholar

  • [24]

    Martínez JP, Olmos S. Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans Biomed Eng 2005; 52: 599–613.CrossrefGoogle Scholar

  • [25]

    Monasterio V, Laguna P, Martínez JP. Multilead analysis of T-wave alternans in the ECG using principal component analysis. IEEE Trans Biomed Eng 2009; 56: 1880–1890.Web of ScienceCrossrefPubMedGoogle Scholar

  • [26]

    Monasterio V, Martínez JP, Laguna P, et al. Prognostic value of average T-wave alternans and QT variability for cardiac events in MADIT-II patients. J Electrocardiol 2013; 46: 480–486.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [27]

    Murabayashi T, Fetics B, Kass D, Nevo E, Gramatikov B, Berger RD. Beat-to-beat QT interval variability associated with acute myocardial ischemia. J Electrocardiol 2002; 35: 19–25.PubMedCrossrefGoogle Scholar

  • [28]

    Nayyar S, Roberts-Thomson KC, Hasan MA, et al. Autonomic modulation of repolarization instability in patients with heart failure prone to ventricular tachycardia. Am J Physiol Heart Circ Physiol 2013; 305: H1181–H1188.Web of ScienceGoogle Scholar

  • [29]

    Nearing BD, Verrier RL. Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol (1985) 2002; 92: 541–549.PubMedCrossrefGoogle Scholar

  • [30]

    Oosterhoff P, Tereshchenko LG, van der Heyden MA, et al. Short-term variability of repolarization predicts ventricular tachycardia and sudden cardiac death in patients with structural heart disease: a comparison with QT variability index. Heart Rhythm 2011; 8: 1584–1590.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [31]

    Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985; 32: 230–236.PubMedGoogle Scholar

  • [32]

    Piccirillo G, Moscucci F, D’Alessandro G, et al. Myocardial repolarization dispersion and autonomic nerve activity in a canine experimental acute myocardial infarction model. Heart Rhythm 2014; 11: 110–118.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    Piccirillo G, Moscucci F, Pascucci M, et al. Influence of aging and chronic heart failure on temporal dispersion of myocardial repolarization. Clin Interv Aging 2013; 8: 293–300.Web of SciencePubMedGoogle Scholar

  • [34]

    Ribeiro AL, Rocha MO, Terranova P, Cesarano M, Nunes MD, Lombardi F. T-wave amplitude variability and the risk of death in Chagas disease. J Cardiovasc Electrophysiol 2011; 22: 799–805.Web of ScienceCrossrefPubMedGoogle Scholar

  • [35]

    Rijnbeek PR, van Herpen G, Bots ML, et al. Normal values of the Electrocardiogram for ages 16–90 years. J Electrocardiol 2014; 47: 914–921.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [36]

    Schmidt M, Baumert M, Porta A, Malberg H, Zaunseder S. Two-dimensional warping for one-dimensional signals – Conceptual Framework and Application to ECG Processing. IEEE Trans Signal Process 2014; 62: 5577–5588.Web of ScienceCrossrefGoogle Scholar

  • [37]

    Smith JM, Clancy EA, Valeri CR, Ruskin JN, Cohen RJ. Electrical alternans and cardiac electrical instability. Circulation 1988; 77: 110–121.CrossrefPubMedGoogle Scholar

  • [38]

    Sobue Y, Watanabe E, Yamamoto M, et al. Beat-to-beat variability of T-wave amplitude for the risk assessment of ventricular tachyarrhythmia in patients without structural heart disease. Europace 2011; 13: 1612–1618.Web of ScienceCrossrefPubMedGoogle Scholar

  • [39]

    Sur S, Han L, Tereshchenko LG. Comparison of sum absolute QRST integral, and temporal variability in depolarization and repolarization, measured by dynamic vectorcardiography approach, in healthy men and women. PLoS One 2013; 8: e57175.CrossrefWeb of SciencePubMedGoogle Scholar

  • [40]

    Tasic J, Zupan I. T-wave variability as a risk stratifier in patients with dilated cardiomyopathy. Pacing Clin Electrophysiol 2009; 32(Suppl 1): S155–S157.Google Scholar

  • [41]

    The top 10 causes of death. 2013, World Health Organization. Available at: http://www.who.int/mediacentre/factsheets/fs310/en/.

  • [42]

    Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH, Malik M. Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation 2000: 102: 1252–1257.PubMedCrossrefGoogle Scholar

  • [43]

    Zaidi M, Robert A, Fesler R, Derwael C, Brohet C. Dispersion of ventricular repolarisation: a marker of ventricular arrhythmias in patients with previous myocardial infarction. Heart 1997; 78: 371–375.PubMedCrossrefGoogle Scholar

  • [44]

    Zareba W, Moss AJ, le Cessie S. Dispersion of ventricular repolarization and arrhythmic cardiac death in coronary artery disease. Am J Cardiol 1994; 74: 550–553.CrossrefPubMedGoogle Scholar

  • [45]

    Zipes DP, Wellens HJ. Sudden cardiac death. Circulation 1998; 98: 2334–2351.CrossrefPubMedGoogle Scholar

  • [46]

    Zouggari Y, Ait-Oufella H, Bonnin P, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 2013; 19: 1273–1280.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Muhammad A. Hasan, PhD, Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada


Received: 2015-09-29

Accepted: 2016-11-15

Published Online: 2016-12-21

Published in Print: 2018-03-28


Research funding:

The research was supported by the Canada Research Chairs program and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Conflict of interest: Authors state no conflict of interest.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 2, Pages 123–130, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2015-0186.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Martin Schmidt, Mathias Baumert, Hagen Malberg, and Sebastian Zaunseder
Biomedical Signal Processing and Control, 2018, Volume 43, Page 311
[2]
Muhammad A. Hasan, Vijay S. Chauhan, and Sridhar Krishnan
Computers in Biology and Medicine, 2016, Volume 77, Page 1

Comments (0)

Please log in or register to comment.
Log in