Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 3

Issues

Volume 57 (2012)

Electro-spun PLA-PEG-yarns for tissue engineering applications

Magnus Kruse
  • Department of Biohybrid and Medical Textiles (BioTex) at Institut fuer Textiltechnik and AME-Helmholtz Institute for Biomedical Engineering, Forckenbeckstr. 55, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marc Greuel
  • Department of Biohybrid and Medical Textiles (BioTex) at Institut fuer Textiltechnik and AME-Helmholtz Institute for Biomedical Engineering, Forckenbeckstr. 55, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Franziska Kreimendahl
  • Department of Biohybrid and Medical Textiles (BioTex) at Institut fuer Textiltechnik and AME-Helmholtz Institute for Biomedical Engineering, Forckenbeckstr. 55, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Schneiders
  • Department of Biohybrid and Medical Textiles (BioTex) at Institut fuer Textiltechnik and AME-Helmholtz Institute for Biomedical Engineering, Forckenbeckstr. 55, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benedict Bauer
  • Department of Biohybrid and Medical Textiles (BioTex) at Institut fuer Textiltechnik and AME-Helmholtz Institute for Biomedical Engineering, Forckenbeckstr. 55, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Gries
  • RWTH Aachen University, Institut fuer Textiltechnik at RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Jockenhoevel
  • Corresponding author
  • Department of Biohybrid and Medical Textiles (BioTex) at Institut fuer Textiltechnik and AME-Helmholtz Institute for Biomedical Engineering, Forckenbeckstr. 55, 52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-30 | DOI: https://doi.org/10.1515/bmt-2017-0232

Abstract

Electro-spinning is widely used in tissue-engineered applications mostly in form of non-woven structures. The development of e-spun yarn opens the door for textile fabrics which combine the micro to nanoscale dimension of electro-spun filaments with three-dimensional (3D) drapable textile fabrics. Therefore, the aim of the study was the implementation of a process for electro-spun yarns. Polylactic acid (PLA) and polyethylene glycol (PEG) were spun from chloroform solutions with varying PLA/PEG ratios (100:0, 90:10, 75:25 and 50:50). The yarn samples produced were analyzed regarding their morphology, tensile strength, water uptake and cytocompatibility. It was found that the yarn diameter decreased when the funnel collector rotation was increasd, however, the fiber diameter was not influenced. The tensile strength was also found to be dependent on the PEG content. While samples composed of 100% PLA showed a tensile strength of 2.5±0.7 cN/tex, the tensile strength increased with a decreasing PLA content (PLA 75%/PEG 25%) to 6.2±0.5 cN/tex. The variation of the PEG content also influenced the viscosity of the spinning solutions. The investigation of the cytocompatibility with endothelial cells was conducted for PLA/PEG 90:10 and 75:25 and indicated that the samples are cytocompatible.

Keywords: electro-spinning; funnel collector; nanofiber yarn; polyethylene glycol; polylactic acid; yarn

References

  • [1]

    Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 2012;1:10–25.PubMedCrossrefGoogle Scholar

  • [2]

    Pham Q, Sharma U, Mikos A. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006;12:1197–211.CrossrefPubMedGoogle Scholar

  • [3]

    Amini G, Banitaba SN, Gharehaghaji AA. Imparting strength into nanofiberous yarn by adhesive bonding. Int J Adhes Adhes 2017;75:96–100.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 2007;46:5670–703.PubMedCrossrefGoogle Scholar

  • [5]

    Kai D, Jin G, Prabhakaran MP, Ramakrishna S. Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnol J 2013;8:59–72.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [6]

    Kishan AP, Cosgriff-Hernandez EM. Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res A 2017;105:2892–905.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [7]

    Maleki H, Gharehaghaji AA, Toliyat T, Dijkstra PJ. Drug release behavior of electrospun twisted yarns as implantable medical devices. Biofabrication 2016;8:35019.Web of ScienceCrossrefGoogle Scholar

  • [8]

    Asghari Mooneghi S, Gharehaghaji AA, Hosseini-Toudeshky H, Torkaman G. Tensile fatigue behavior of polyamide 66 nanofiber yarns. Polym Eng Sci 2015;55:1805–11.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Ali U, Niu H, Abbas A, Shao H, Lin T. Online stretching of directly electrospun nanofiber yarns. RSC Adv 2016;6:30564–9.Web of ScienceCrossrefGoogle Scholar

  • [10]

    Shuakat MN, Lin T. Recent developments in electrospinning of nanofiber yarns. J Nanosci Nanotechnol 2014;14:1389–408.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [11]

    Tsai CC, Gu Y, Kornev KG. Wetting of nanofiber yarns. Colloids Surf A Physicochem Eng Asp 2014;459:22–30.CrossrefGoogle Scholar

  • [12]

    Tsai CC, Mikes P, Andrukh T, White E, Monaenkova D, Burtovyy O, et al. Nanoporous artificial proboscis for probing minute amount of liquids. Nanoscale 2011;3:4685.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [13]

    Yan T, Pan Z. High conductivity electrospun carbon/graphene composite nanofiber yarns. Polym Eng Sci 2017;28:325.Web of ScienceGoogle Scholar

  • [14]

    Maleki H, Gharehaghaji AA, Moroni L, Dijkstra P. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns. Biofabrication 2013;5:35014.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Maleki H, Gharehaghaji AA, Criscenti G, Moroni L, Dijkstra PJ. The influence of process parameters on the properties of electrospun PLLA yarns studied by the response surface methodology. J Appl Polym Sci 2015;132:41388.Web of ScienceGoogle Scholar

  • [16]

    Shao W, He J, Han Q, Sang F, Wang Q, Chen L, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Materials science & engineering. C, Mater Biologic Appl 2016;67:599–610.Google Scholar

  • [17]

    Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee W-K, et al. In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA Nanofibers. Biomacromolecules 2009;10:237–42.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [18]

    Ramdhanie LI, Aubuchon SR, Boland ED, Knapp DC, Barnes CP, Simpson DG, et al. Thermal and mechanical characterization of electrospun blends of poly(lactic acid) and poly(glycolic acid). Polym J 2006;38:1137–45.CrossrefGoogle Scholar

  • [19]

    Corbion Purac Biomaterials: physical properties datasheet 04. Amsterdam, The Netherlands: Corbion.Google Scholar

  • [20]

    Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 2011;49:832–64.CrossrefPubMedGoogle Scholar

  • [21]

    Aboutalebi Anaraki N, Roshanfekr Rad L, Irani M, Haririan I. Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci 2015;132:3.Web of ScienceGoogle Scholar

  • [22]

    Yamaoka T, Tabata Y, Ikad Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 1994;83:601–6.CrossrefPubMedGoogle Scholar

  • [23]

    Rashkov I, Manolova N, Li SM, Espartero JL, Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains. Macromolecules 1996;29:50–6.CrossrefGoogle Scholar

  • [24]

    Ali U, Zhou Y, Wang X, Lin T. Direct electrospinning of highly twisted, continuous nanofiber yarns. J Text I 2012;103: 80–8.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    Fridrikh SV, Yu JH, Brenner MP, Rutledge GC. Controlling the fiber diameter during electrospinning. Phys Rev Lett 2003;90:144502.CrossrefPubMedGoogle Scholar

  • [26]

    Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999;40:4585–92.CrossrefGoogle Scholar

  • [27]

    Maleki H, Barani H. Morphological and mechanical properties of drawn poly(l-lactide) electrospun twisted yarns. Polym Eng Sci 2017;43:50.Web of ScienceGoogle Scholar

  • [28]

    Li D, Pan X, Sun B, Wu T, Chen W, Huang C, et al. Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. J Mater Chem B 2015;3:8823–31.Web of ScienceCrossrefGoogle Scholar

  • [29]

    Bhattarai SR, Bhattarai N, Viswanathamurthi P, Yi HK, Hwang PH, Kim HY. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J Biomed Mater Res A 2006;78:247–57.PubMedGoogle Scholar

  • [30]

    Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity. Polymer 2003;44:5711–20.CrossrefGoogle Scholar

About the article

Corresponding author: Univ.-Prof. Dr. med. Stefan Jockenhoevel, Department of Biohybrid and Medical Textiles (BioTex) at Institut fuer Textiltechnik and AME-Helmholtz Institute for Biomedical Engineering, Forckenbeckstr. 55, 52074 Aachen, Germany, Phone/Fax: +49 (0)241 80 89886


Received: 2017-12-21

Accepted: 2018-03-22

Published Online: 2018-04-30

Published in Print: 2018-06-27


Author Statement

Research funding: This research project was supported by the START-Program (VascuGarn) of the Faculty of Medicine, RWTH Aachen. The authors carry the responsibility for the content of this publication.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 3, Pages 231–243, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0232.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in