Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 4

Issues

Volume 57 (2012)

A new in vitro spine test rig to track multiple vertebral motions under physiological conditions

Agnes Beckmann
  • Corresponding author
  • RWTH Aachen University, Institute of General Mechanics, Aachen, Germany, Phone: +49-2414-80 94596
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Herren / Marion Mundt
  • RWTH Aachen University, Institute of General Mechanics, Aachen, Germany, Phone: +49-2414-80 94596
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Siewe / Philipp Kobbe / Rolf Sobottke
  • Medizinischen Zentrums StädteRegion Aachen, Department for Orthopedic Surgery Würselen, Nordrhein-Westfalen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Christoph Pape / Marcus Stoffel
  • RWTH Aachen University, Institute of General Mechanics, Aachen, Germany, Phone: +49-2414-80 94596
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernd Markert
  • RWTH Aachen University, Institute of General Mechanics, Aachen, Germany, Phone: +49-2414-80 94596
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-27 | DOI: https://doi.org/10.1515/bmt-2016-0173

Abstract

In vitro pure moment spine tests are commonly used to analyse surgical implants in cadaveric models. Most of the tests are performed at room temperature. However, some new dynamic instrumentation devices and soft tissues show temperature-dependent material properties. Therefore, the aim of this study is to develop a new test rig, which allows applying pure moments on lumbar spine specimens in a vapour-filled chamber at body temperature. As no direct sight is given in the vapour-filled closed chamber, a magnetic tracking (MT) system with implantable receivers was used. Four human cadaveric lumbar spines (L2–L5) were tested in a vapour atmosphere at body temperature with a native and rigid instrumented group. In conclusion, the experimental set-up allows vertebral motion tracking of multiple functional spinal units (FSUs) in a moisture environment at body temperature.

Keywords: biomechanics; body temperature; implant; in vitro; kinematics; spine

References

  • [1]

    Bass CR, Planchak CJ, Salzar RS, et al. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments. Spine (Phila Pa 1976) 2007; 32: E436–E442.Web of ScienceGoogle Scholar

  • [2]

    Costi JJ, Hearn TC, Fazzalari NL. The effect of hydration on the stiffness of intervertebral discs in an ovine model. Clin Biomech (Bristol, Avon) 2002; 17: 446–455.CrossrefGoogle Scholar

  • [3]

    Crawford NR, Brantley AG, Dickman CA, Koeneman EJ. An apparatus for applying pure nonconstraining moments to spine segments in vitro. Spine 1995; 20: 2097–2100.CrossrefPubMedGoogle Scholar

  • [4]

    Faber M, Schamhardt H, Van Weeren P. Determination of 3d spinal kinematics without defining a local vertebral coordinate system. J Biomech 1999; 32: 1355–1358.PubMedCrossrefGoogle Scholar

  • [5]

    Gédet P, Thistlethwaite PA, Ferguson SJ. Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement. J Biomech 2007; 40: 1881–1885.CrossrefWeb of SciencePubMedGoogle Scholar

  • [6]

    Goel VK, Nye TA, Clark CR, Nishiyama K, Weinstein JN. A technique to evaluate an internal spinal device by use of the selspot system: an application to luque closed loop. Spine 1987; 12: 150–159.PubMedCrossrefGoogle Scholar

  • [7]

    Goertzen DJ, Lane C, Oxland TR. Neutral zone and range of motion in the spine are greater with stepwise loading than with a continuous loading protocol. an in vitro porcine investigation. J Biomech 2004; 37: 257–261.CrossrefGoogle Scholar

  • [8]

    Huang CY, Wang VM, Flatow EL, Mow VC. Temperature-dependent viscoelastic properties of the human supraspinatus tendon. J Biomech 2009; 42: 546–549.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [9]

    Hummel J, Figl M, Birkfellner W, et al. Evaluation of a new electromagnetic tracking system using a standardized assessment protocol. Phys Med Biol 2006; 51: N205.CrossrefPubMedGoogle Scholar

  • [10]

    Kindratenko VV. A survey of electromagnetic position tracker calibration techniques. Virt Real 2000; 5: 169–182.CrossrefGoogle Scholar

  • [11]

    Knop C, Lange U, Bastian L, Blauth M. Three-dimensional motion analysis with synex. Euro Spine J 2000; 9: 472–485.CrossrefGoogle Scholar

  • [12]

    Lee RY. Kinematics of rotational mobilisation of the lumbar spine. Clin Biomech 2001; 16: 481–488.CrossrefGoogle Scholar

  • [13]

    McLachlin SD. An Investigation of Subaxial Cervical Spine Trauma and Surgical Treatment through Biomechanical Simulation and Kinematic Analysis. PhD thesis, Department of Mechanical and Materials Engineering, University of Western Ontario 2013.Google Scholar

  • [14]

    Milne A, Chess D, Johnson J, King G. Accuracy of an electromagnetic tracking device: a study of the optimal operating range and metal interference. J Biomech 1996; 29: 791–793.PubMedCrossrefGoogle Scholar

  • [15]

    Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR. Biomechanical characterization of the three-dimensional kinematic behaviour of the dynesys dynamic stabilization system: an in vitro study. Euro Spine J 2006; 15: 913–922.CrossrefGoogle Scholar

  • [16]

    Nixon MA, McCallum BC, Fright WR, Price NB. The effects of metals and interfering fields on electromagnetic trackers. Presence Teleop Virt Environ 1998; 70: 204–218.Google Scholar

  • [17]

    Northern Digital Inc. Aurora V2 User Guide. Waterloo, Ontario, Canada N2V 1C5: Northern Digital Inc. 2012.Google Scholar

  • [18]

    Panjabi MM. Biomechanical evaluation of spinal fixation devices: I. a conceptual framework. Spine 1988; 13: 1129–1134.CrossrefPubMedGoogle Scholar

  • [19]

    Pearcy M, Hindle R. New method for the non-invasive three-dimensional measurement of human back movement. Clin Biomech 1989; 4: 73–79.CrossrefGoogle Scholar

  • [20]

    Pflaster DS, Krag MH, Johnson CC, Haugh LD, Pope MH. Effect of test environment on intervertebral disc hydration. Spine 1997; 22: 133–139.PubMedCrossrefGoogle Scholar

  • [21]

    Raab FH, Blood EB, Steiner TO, Jones HR. Magnetic position and orientation tracking system. IEEE Trans Aero Elec Sys 1979; 15: 709–718.Google Scholar

  • [22]

    Schmoelz W, Huber J, Nydegger T, Dipl-Ing, Claes L, Wilke H. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 2003; 160: 418–423.Google Scholar

  • [23]

    Serhan H, Mhatre D, Defossez H, Bono CM. Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons. SAS J 2011; 5: 75–89.CrossrefPubMedGoogle Scholar

  • [24]

    Stoffel M, Willenberg W, Azarnoosh M, Fuhrmann-Nelles N, Zhou B, Markert B. Towards bioreactor development with physiological motion control and its applications. Med Eng Phys 2017; 39: 106–112.Web of ScienceCrossrefPubMedGoogle Scholar

  • [25]

    Stolworthy DK, Zirbel SA, Howell LL, Samuels M, Bowden AE. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature. Spine J 2014; 14: 789–798.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [26]

    Strube P, Tohtz S, Hoff E, Gross C, Perka C, Putzier M. Dynamic stabilization adjacent to single-level fusion: part i. biomechanical effects on lumbar spinal motion. Euro Spine J 2010; 19: 2171–2180.CrossrefGoogle Scholar

  • [27]

    Van der Veen AJ, Dieen JH, Nadort A, Stam B, Smit TH. Intervertebral disc recovery after dynamic or static loading in vitro: Is there a role for the endplate? J Biomech 2000; 10: 2230–2235.Web of ScienceGoogle Scholar

  • [28]

    Van Herp G, Rowe P, Salter P, Paul J. Three-dimensional lumbar spinal kinematics: a study of range of movement in 100 healthy subjects aged 20 to 60+ years. Rheumatology 2000; 39: 1337–1340.CrossrefGoogle Scholar

  • [29]

    Volkheimer D, Malakoutian M, Oxland TR, Wilke HJ. Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Euro Spine J 2015; 24: 1882–1892.CrossrefGoogle Scholar

  • [30]

    Wang Y, Spangler C, Tai BL, Shih AJ. Positional accuracy and transmitter orientation of the 3d electromagnetic tracking system. Measur Sci Technol 2013; 24: 105105.CrossrefGoogle Scholar

  • [31]

    Wilke HJ, Claes L, Schmitt H, Wolf S. A universal spine tester for in vitro experiments with muscle force simulation. Euro Spine J 1994; 3: 91–97.CrossrefGoogle Scholar

  • [32]

    Wilke HJ, Jungkunz B, Wenger K, Claes LE. Spinal segment range of motion as a function of in vitro test conditions: Effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 1998; 251: 15–19.CrossrefPubMedGoogle Scholar

  • [33]

    Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A. Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part i. lumbar spine. Euro Spine J 2006; 15: 720–30.CrossrefGoogle Scholar

  • [34]

    Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Euro Spine J 1998; 7: 148–154.CrossrefGoogle Scholar

  • [35]

    Wilson E, Yaniv Z, Zhang H, et al. A hardware and software protocol for the evaluation of electromagnetic tracker accuracy in the clinical environment: a multi-center study. Proc SPIE Med Img 2007; 6509: 65092T1–65092T11.Google Scholar

  • [36]

    Zirbel SA, Stolworthy DK, Howell LL, Bowden AE. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Spine J 2013; 13: 1134–1147.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-08-24

Accepted: 2017-02-15

Published Online: 2017-04-27

Published in Print: 2018-07-26


Author Statement

Research funding: This project is partially funded by START RWTH Research grants.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 4, Pages 341–347, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0173.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Stavros Oikonomidis, Rolf Sobottke, Hans-Joachim Wilke, Christian Herren, Agnes Beckmann, Kourosh Zarghooni, and Jan Siewe
European Spine Journal, 2019, Volume 28, Number 4, Page 872
[2]
Christian Herren, Agnes Beckmann, Sabine Meyer, Miguel Pishnamaz, Marion Mundt, Rolf Sobottke, Andreas Prescher, Marcus Stoffel, Bernd Markert, Philipp Kobbe, Hans-Christoph Pape, Peer Eysel, and Jan Siewe
Clinical Biomechanics, 2017, Volume 44, Page 67

Comments (0)

Please log in or register to comment.
Log in