Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Volume 63, Issue 5


Volume 57 (2012)

Diffuse near-infrared imaging of tissue with picosecond time resolution

Dirk Grosenick
  • Corresponding author
  • Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2–12, 10587 Berlin, Germany, Phone: +49 30 3481-7302, Fax: +49 30 3481-7505
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heidrun Wabnitz / Rainer Macdonald
Published Online: 2018-03-01 | DOI: https://doi.org/10.1515/bmt-2017-0067


Optical imaging of biological tissue in vivo at multiple wavelengths in the near-infrared (NIR) spectral range can be achieved with picosecond time resolution at high sensitivity by time-correlated single photon counting. Measuring and analyzing the distribution of times of flight of photons randomly propagated through the tissue has been applied for diffuse optical imaging and spectroscopy, e.g. of human breast tissue and of the brain. In this article, we review the main features and the potential of NIR multispectral imaging with picosecond time resolution and illustrate them by exemplar applications in these fields. In particular, we discuss the experimental methods developed at the Physikalisch-Technische Bundesanstalt (PTB) to record optical mammograms and to quantify the absorption and scattering properties from which hemoglobin concentration and oxygen saturation of healthy and diseased breast tissue have been derived by combining picosecond time-domain and spectral information. Furthermore, optical images of functional brain activation were obtained by a non-contact scanning device exploiting the null source-detector separation approach which takes advantage of the picosecond time resolution as well. The recorded time traces of changes in the oxy- and deoxyhemoglobin concentrations during a motor stimulation investigation show a localized response from the brain.

Keywords: diffuse optical imaging; fNIRS; near-infrared spectroscopy; optical mammography; time-resolved optical imaging


  • [1]

    Grosenick D, Rinneberg R, Cubbeddu R, Taroni P. Review of optical breast imaging and spectroscopy. J Biomed Opt 2016;21:091311.Google Scholar

  • [2]

    Boas DA, Elwell CE, Ferrari M, Taga G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage 2014;85(Pt 1):1–5.Google Scholar

  • [3]

    Contini D, Zucchelli L, Spinelli L, Caffini M, Re R, Pifferi A, et al. Review: brain and muscle near infrared spectroscopy/imaging techniques. J Near Infrared Spectrosc 2012;20:15–27.Google Scholar

  • [4]

    Durduran T, Choe R, Baker WB, Yodh AG. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys 2010;73:076701.Google Scholar

  • [5]

    Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol 2005;50:R1–43.Google Scholar

  • [6]

    O’Sullivan TD, Cerussi AE, Cuccia DJ, Tromberg BJ. Diffuse optical imaging using spatially and temporally modulated light. J Biomed Opt 2012;17:71311.Google Scholar

  • [7]

    Doornbos RM, Lang R, Aalders MC, Cross FW, Sterenborg HJ. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol 1999;44:967–81.Google Scholar

  • [8]

    Mittnacht AJC. Near infrared spectroscopy in children at high risk of low perfusion. Curr Opin Anaesthesiol 2010;23:342–7.Google Scholar

  • [9]

    Lauritsen K, Riecke S, Bülter A, Schönau T. Modern pulsed diode laser sources for time-correlated photon counting. In: Kapusta P, Wahl M, Erdmann R, editors. Advanced Photon Counting. Cham: Springer International Publishing; 2015:71–87.Google Scholar

  • [10]

    Pifferi A, Farina A, Torricelli A, Quarto G, Cubeddu R, Taroni P. Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives. J Near Infrared Spectrosc 2012;20:223–35.Google Scholar

  • [11]

    Grosenick D, Moesta KT, Wabnitz H, Mucke J, Stroszczynski C, Macdonald R, et al. Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors. Appl Opt 2003;42:3170–86.Google Scholar

  • [12]

    Prahl SA. Tabulated molar extinction coefficient for hemoglobin in water. http://omlc.ogi.edu/spectra/hemoglobin/summary.html.

  • [13]

    Rinneberg H, Grosenick D, Moesta KT, Wabnitz H, Mucke J, Wübbeler G, et al. Detection and characterization of breast tumours by time-domain scanning optical mammography. Opto-Electron Rev 2008;16:147–62.Google Scholar

  • [14]

    Taroni P, Pifferi A, Salvagnini E, Spinelli L, Torricelli A, Cubeddu R. Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification. Opt Express 2009;17:15932–46.Google Scholar

  • [15]

    Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, et al. Time domain functional NIRS imaging for human brain mapping. Neuroimage 2014;85(Pt 1):28–50.Google Scholar

  • [16]

    Franceschini MA, Moesta KT, Fantini S, Gaida G, Gratton E, Jess H, et al. Frequency-domain techniques enhance optical mammography: initial clinical results. Proc Natl Acad Sci USA 1997;94:6468–73.Google Scholar

  • [17]

    Götz L, Heywang-Köbrunner SH, Schütz O, Siebold H. Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen). Akt Radiol 1998;8:31–3.Google Scholar

  • [18]

    Grosenick D, Wabnitz H, Rinneberg H, Moesta KT, Schlag PM. Development of a time-domain optical mammograph and first in vivo applications. Appl Opt 1999;38:2927–43.Google Scholar

  • [19]

    Grosenick D, Kummrow A, Macdonald R, Schlag PM, Rinneberg H. Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms. Phys Rev E 2007;76:061908.Google Scholar

  • [20]

    Grosenick D, Wabnitz H, Moesta KT, Mucke J, Schlag PM, Rinneberg H. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas. Phys Med Biol 2005;50:2451–68.Google Scholar

  • [21]

    Grosenick D, Wabnitz H, Moesta KT, Mucke J, Möller M, Stroszczynski C, et al. Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography. Phys Med Biol 2004;49:1165–81.Google Scholar

  • [22]

    Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012;63:921–35.Google Scholar

  • [23]

    Ferrari M, Quaresima V. Review: near infrared brain and muscle oximetry: from the discovery to current applications. J Near Infrared Spectrosc 2012;20:1–14.Google Scholar

  • [24]

    Hebden JC, Austin T. Optical tomography of the neonatal brain. Eur Radiol 2007;17:2926–33.Google Scholar

  • [25]

    Steinbrink J, Wabnitz H, Obrig H, Villringer A, Rinneberg H. Determining changes in NIR absorption using a layered model of the human head. Phys Med Biol 2001;46:879–96.Google Scholar

  • [26]

    Liebert A, Wabnitz H, Steinbrink J, Obrig H, Möller M, Macdonald R, et al. Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Appl Opt 2004;43:3037–47.Google Scholar

  • [27]

    Kirilina E, Jelzow A, Heine A, Niessing M, Wabnitz H, Brühl R, et al. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neuroimage 2012;61:70–81.Google Scholar

  • [28]

    Jelzow A, Wabnitz H, Tachtsidis I, Kirilina E, Brühl R, Macdonald R. Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement. Biomed Opt Express 2014;5:1465–82.Google Scholar

  • [29]

    Liebert A, Wabnitz H, Steinbrink J, Möller M, Macdonald R, Rinneberg H, et al. Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance. Neuroimage 2005;24:426–35.Google Scholar

  • [30]

    Steinkellner O, Gruber C, Wabnitz H, Jelzow A, Steinbrink J, Fiebach JB, et al. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke. J Biomed Opt 2010;15:061708.Google Scholar

  • [31]

    Becker W, editor. Advanced Time-correlated Single-Photon Counting Applications. Cham: Springer International Publishing; 2015.Google Scholar

  • [32]

    Torricelli A, Pifferi A, Spinelli L, Cubeddu R, Martelli F, Del Bianco S, et al. Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging. Phys Rev Lett 2005;95:078101.Google Scholar

  • [33]

    Dalla Mora A, Tosi A, Zappa F, Cova S, Contini D, Pifferi A, et al. Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy. J Sel Top Quantum Electron 2010;16:1023–30.Google Scholar

  • [34]

    Di Sieno L, Wabnitz H, Pifferi A, Mazurenka M, Hoshi Y, Dalla Mora A, et al. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. Rev Sci Instrum 2016;87:035118.Google Scholar

  • [35]

    Mazurenka M, Di Sieno L, Boso G, Contini D, Pifferi A, Mora AD, et al. Non-contact in vivo diffuse optical imaging using a time-gated scanning system. Biomed Opt Express 2013;4:2257–68.Google Scholar

  • [36]

    Wabnitz H, Mazurenka M, Fuchs K, Di Sieno L, Boso G, Contini D, et al. Non-contact scanning time-domain functional optical imaging of the adult human brain. Proc SPIE 2015;9538:953802.Google Scholar

  • [37]

    Pifferi A, Contini D, Dalla Mora A, Farina A, Spinelli L, Torricelli A. New frontiers in time-domain diffuse optics, a review. J Biomed Opt 2016;21:91310.Google Scholar

About the article

Received: 2017-05-16

Accepted: 2017-12-04

Published Online: 2018-03-01

Published in Print: 2018-10-25

Author Statement

Research funding: Authors state no funding involved.

Conflict of interest: Authors state no conflict of interest.

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 5, Pages 511–518, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0067.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in