Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 5

Issues

Volume 57 (2012)

Approaches for calibration and validation of near-infrared optical methods for oxygenation monitoring

Christoph Hornberger / Heidrun Wabnitz
Published Online: 2018-02-09 | DOI: https://doi.org/10.1515/bmt-2017-0116

Abstract

Pulse oximetry for arterial oxygenation monitoring and tissue oximetry for monitoring of cerebral oxygenation or muscle oxygenation are based on quantitative in vivo diffuse optical spectroscopy. However, in both cases the information on absolute or relative concentration of human tissue constituents and especially on hemoglobin oxygenation can often not be retrieved by model-based analysis. An in vivo calibration against an accepted reference measurement can be a practical alternative. Pulse oximeters and most of commercial cerebral tissue oximeters rely on empirical calibration based on invasive controlled human desaturation studies. As invasive in vivo tests on healthy subjects are ethically disputable and should be limited to exceptional cases this calibration practice is unsatisfactory. We present the current status and problems of calibration and validation in pulse oximetry and cerebral tissue oximetry including the pros and cons of in vivo as well as in vitro methods. We emphasize various digital and physical phantom approaches and discuss the prospects of their application and possible further developments.

Keywords: cerebral oximetry; desaturation studies; oxygenation monitoring; phantoms; pulse oximetry; tissue oximetry

References

  • [1]

    Akl TJ, King TJ, Long R, et al. In vitro performance of a perfusion and oxygenation optical sensor using a unique liver phantom. Proc SPIE 2012; 8229: 822904.Google Scholar

  • [2]

    Arridge SR. Photon-measurement density functions. Part I: analytical forms. Appl Opt 1995; 34: 7395–7409.Google Scholar

  • [3]

    Batchelder PB, Raley DM. Maximizing the laboratory setting for testing devices and understanding statistical output in pulse oximetry. Anesth Analg 2007; 105(Suppl 6): S85–S94.Google Scholar

  • [4]

    Bickler PE, Feiner JR, Lipnick MS, Batchelder P, MacLeod DB, Severinghaus JW. Effects of acute, profound hypoxia on healthy humans. Anesth Analg 2017; 124: 146–153.Google Scholar

  • [5]

    Bickler PE, Feiner JR, Rollins MD. Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers. Anesth Analg 2013; 117: 813–823.Google Scholar

  • [6]

    Calabro K, Bigio I. Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations. J Biomed Opt 2014; 19: 075005.Google Scholar

  • [7]

    Chen C, Ahmed M, Häfner T, Klämpfl F, Stelzle F, Schmidt M. Fabrication of a turbid optofluidic phantom device with tunable μa and μ′s to simulate cutaneous vascular perfusion. Sci Rep 2016; 6: 30567.Google Scholar

  • [8]

    Chon B, Tokumasu F, Lee JY, Allen DW, Rice JP, Hwang J. Digital phantoms generated by spectral and spatial light modulators. J Biomed Opt 2015; 20: 121309–121328.Google Scholar

  • [9]

    Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation. Anesthesiology 2012; 116: 834–840.Google Scholar

  • [10]

    Farina A, Torricelli A, Bargigia I, et al. In-vivo multilaboratory investigation of the optical properties of the human head. Biomed Opt Express 2015; 6: 2609–2623.Google Scholar

  • [11]

    Ferrari M, Quaresima V. Review: near infrared brain and muscle oximetry: from the discovery to current applications. J Near Infrared Spectrosc 2012; 20: 1–14.Google Scholar

  • [12]

    Gehring H, Duembgen L, Peterlein M, Hagelberg S, Dibbelt L. Hemoximetry as the “gold standard”? Error assessment based on differences among identical blood gas analyzer devices of five manufacturers. Anesth Analg 2007; 105(6 Suppl): 24–30.Google Scholar

  • [13]

    Ghassemi P, Wang J, Melchiorri AJ, et al. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging. J Biomed Opt 2015; 20: 121312.Google Scholar

  • [14]

    Greisen G, Andresen B, Plomgaard AM, Hyttel-Sørensen S. Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal. Neurophotonics 2016; 3: 031407-1–031407-6.Google Scholar

  • [15]

    Gunadi S, Leung TS, Elwell CE, Tachtsidis I. Spatial sensitivity and penetration depth of three cerebral oxygenation monitors. Biomed Opt Express 2014; 5: 2896–2912.Google Scholar

  • [16]

    Hessel TW, Hyttel-Sorensen S, Greisen G. Cerebral oxygenation after birth – a comparison of INVOS and FORE-SIGHT near-infrared spectroscopy oximeters. Acta Paediatr 2014; 103: 488–493.Google Scholar

  • [17]

    Hornberger C, Knoop P, Matz H, et al. A prototype device for standardized calibration of pulse oximeters II. J Clin Monit Comput 2002; 17: 203–209.Google Scholar

  • [18]

    Hornberger C, Knoop P, Nahm W, et al. A prototype device for standardized calibration of pulse oximeters. J Clin Monit Comput 2000; 16: 161–169.Google Scholar

  • [19]

    Hwang J, Ramella-Roman JC, Nordstrom R. Introduction: feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices. Biomed Opt Express 2012; 3: 1399–1403.Google Scholar

  • [20]

    Hyttel-Sorensen S, Kleiser S, Wolf M, Greisen G. Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom. Biomed Opt Express 2013; 4: 1662–1672.Google Scholar

  • [21]

    Imonot L, Hersch RD, Hébert MH, Mazauric SM. Multilayer four-flux matrix model accounting for directional-diffuse light transfers. Appl Opt 2016; 55: 27–37.Google Scholar

  • [22]

    ISO 80601-2-61:2011 Medical electrical equipment – Part 2-61: Particular requirements for basic safety and essential performance of pulse oximeter equipment.Google Scholar

  • [23]

    Jang HY, Pfefer TJ, Chen Y. Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems. Opt Lett 2015; 40: 4321–4324.Google Scholar

  • [24]

    Kleiser S, Nasseri N, Andresen B, Greisen G, Wolf M. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties. Biomed Opt Express 2016; 7: 2973–2992.Google Scholar

  • [25]

    Korhonen V, Myllylä S, Kirillin M, et al. Light propagation in NIR spectroscopy of the human brain. IEEE J Sel Top Quantum Electronics 2014; 20: 289–298.Google Scholar

  • [26]

    Kraitl J, Klinger D, Fricke D, Timm U, Ewald H. Non-invasive measurement of blood components. In: Mukhopadhyay SC, Jayasundera KP, Fuchs A, editors. Advancement in Sensing Technology. Heidelberg: Springer 2013: 237–262.Google Scholar

  • [27]

    Mannheimer PD. The light-tissue interaction of pulse oximetry. Anesth Analg 2007; 105(6 Suppl): 10–17.Google Scholar

  • [28]

    Moyle JT. Pulse oximetry. London: BMJ Books 2002.Google Scholar

  • [29]

    Nasseri N, Kleiser S, Ostojic D, Karen T, Wolf M. Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy. Biomed Opt Express 2016; 7: 4605–4619.Google Scholar

  • [30]

    Nitzan M, Romem A, Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl) 2014; 7: 231–239.Google Scholar

  • [31]

    Pifferi A, Contini D, Mora AD, Farina A, Spinelli L, Torricelli A. New frontiers in time-domain diffuse optics, a review. J Biomed Opt 2016; 21: 091310-1–091310-17.Google Scholar

  • [32]

    Pifferi A, Torricelli A, Bassi A, et al. Performance assessment of photon migration instruments: the MEDPHOT protocol. Appl Opt 2005; 44: 2104–2114.Google Scholar

  • [33]

    Pogue BW, Patterson MS. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 2006; 11: 041102.Google Scholar

  • [34]

    Prahl SA, van Gemert M, Welch A. Determining the optical properties of turbid media by using the adding–doubling method. Appl Opt 1993; 32: 559–568.Google Scholar

  • [35]

    Rackebrandt K, Gehring H. Calibration and evaluation of a continuous wave multi-distance NIRS system in simulated desaturation investigations. Biomed Phys Eng Express 2016; 2: 035017.Google Scholar

  • [36]

    Schell RM, Cole DJ. Cerebral monitoring: jugular venous oximetry. Anesth Analg 2000; 90: 559–566.Google Scholar

  • [37]

    Suzuki S, Takasaki S, Ozaki T, Kobayashi Y. A tissue oxygenation monitor using NIR spatially resolved spectroscopy. SPIE Proc 1999; 3597: 582–592.Google Scholar

  • [38]

    Tomlin KL, Neitenbach A-M, Borg U. Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers. BMC Anesthesiol 2017; 17: 6.Google Scholar

  • [39]

    Wabnitz H, Jelzow A, Mazurenka M, et al. Performance assessment of time-domain optical brain imagers, part 2: nEuroPt protocol. J Biomed Opt 2014; 19: 086012.Google Scholar

  • [40]

    Wang J, Coburn J, Liang C-P, et al. Three-dimensional printing of tissue phantoms for biophotonic imaging. Opt Lett 2014; 39: 3010–3013.Google Scholar

  • [41]

    Yudovsky D, Durkin A. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling. Appl Opt 2011; 50: 4237–4245.Google Scholar

About the article

Received: 2017-07-10

Accepted: 2017-08-10

Published Online: 2018-02-09

Published in Print: 2018-10-25


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 5, Pages 537–546, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0116.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in