Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 5

Issues

Volume 57 (2012)

Application of optical and spectroscopic technologies for the characterization of carious lesions in vitro

Florian Tetschke
  • Corresponding author
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Clinic of Operative and Pediatric Dentistry, Dresden, Germany
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lars Kirsten
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonas Golde
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia Walther
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Departement of Medical Physics and Biomedical Engineering, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberta Galli
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edmund Koch
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Hannig
  • Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Clinic of Operative and Pediatric Dentistry, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-25 | DOI: https://doi.org/10.1515/bmt-2017-0133

Abstract

The detection of the beginning demineralization process of dental hard tissue remains a challenging task in dentistry. As an alternative to bitewing radiographs, optical and spectroscopic technologies showed promising results for caries diagnosis. The aim of the present work is to give an overview of optical and spectroscopic properties of healthy and carious human teeth in vitro by means of Raman spectroscopy (RS), optical coherence tomography (OCT) and hyperspectral imaging (HSI). OCT was able to represent microstructural changes below the enamel surface and revealed increased scattering for white spot lesions and a white scattering trail for deeper lesions. HSI showed similar absorbance characteristics for healthy and demineralized enamel over the entire spectrum and a characteristic absorbance peak at 550 nm for discolored lesions. Already at early carious stages (white spot), we found a distinct loss of hydroxylapatite-related intensity at 959 cm−1 in demineralized regions with RS. Healthy and demineralized tooth surfaces can be distinguished at different signal levels by means of RS, OCT and HSI. The presented modalities provide additional information to the current clinical diagnosis of caries such as microstructural changes, quantification of the demineralization and imaging of caries-related chemical changes.

Keywords: caries diagnosis; hyperspectral imaging; optical coherence tomography; Raman spectroscopy

References

  • [1]

    Son S-A, Jung K-H, Ko C-C, Kwon YH. Spectral characteristics of caries-related autofluorescence spectra and their use for diagnosis of caries stage. J Biomed Opt 2016;21:15001.Google Scholar

  • [2]

    Chen Q, Zhu H, Xu Y, Lin B, Chen H. Discrimination of dental caries using colorimetric characteristics of fluorescence spectrum. Caries Res 2015;49:401–7.Google Scholar

  • [3]

    Buchalla W, Lennon AM, Attin T. Fluorescence spectroscopy of dental calculus. J Periodontal Res 2004;39:327–32.Google Scholar

  • [4]

    Lennon ÁM, Attin T, Martens S, Buchalla W. Fluorescence-aided caries excavation (FACE), caries detector, and conventional caries excavation in primary teeth. Pediatr Dent 2009;31:316–9.Google Scholar

  • [5]

    Angelino K, Edlund DA, Shah P. Near-infrared imaging for detecting caries and structural deformities in teeth. IEEE J Transl Eng Heal Med 2017;5:2300107.Google Scholar

  • [6]

    Kühnisch J, Söchtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A, et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig 2016;20:821–9.Google Scholar

  • [7]

    Simon JC, Lucas SA, Staninec M, Tom H, Chan KH, Darling CL, et al. Near-IR transillumination and reflectance imaging at 1300 nm and 1500–1700 nm for in vivo caries detection. Lasers Surg Med 2016;48:828–36.Google Scholar

  • [8]

    Lee RC, Staninec M, Le O, Fried D. Infrared methods for assessment of the activity of natural enamel caries lesions. IEEE J Sel Top Quantum Electron 2016;22:102–10.Google Scholar

  • [9]

    Schneider H, Park K-J, Häfer M, Rüger C, Schmalz G, Krause F, et al. Dental applications of optical coherence tomography (OCT) in cariology. Appl Sci 2017;7:472.Google Scholar

  • [10]

    Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda=1310-nm. Lasers Surg Med 2009;41:208–13.Google Scholar

  • [11]

    Feldchtein FI, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 1998;3:239.Google Scholar

  • [12]

    Fried D, Xie J, Shafi S, Featherstone JD, Breunig TM, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 2002;7:618.Google Scholar

  • [13]

    Wilder-Smith P, Holtzman J, Epstein J, Le A. Optical diagnostics in the oral cavity: an overview. Oral Dis 2010;16:717–28.Google Scholar

  • [14]

    Borisova EG, Uzunov TT, Avramov LA. Early differentiation between caries and tooth demineralization using laser-induced autofluorescence spectroscopy. Lasers Surg Med 2004;34:249–53.Google Scholar

  • [15]

    König K, Flemming G, Hibst R. Laser-induced autofluorescence spectroscopy of dental caries. Cell Mol Biol (Noisy-le-grand) 1998;44:1293–300.Google Scholar

  • [16]

    Shimada Y, Nakagawa H, Sadr A, Wada I, Nakajima M, Nikaido T, et al. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo. J Biophotonics 2014;7:506–13.Google Scholar

  • [17]

    Huynh GD, Darling CL, Fried D. Changes in the optical properties of dental enamel at 1310-nm after demineralization. Lasers in Dentistry X, Proc SPIE 2004;5313:118–24.Google Scholar

  • [18]

    Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt 1995;34:1278–85.Google Scholar

  • [19]

    Simon JC, Chan KH, Darling CL, Fried D. Multispectral near-IR reflectance imaging of simulated early occlusal lesions: variation of lesion contrast with lesion depth and severity. Lasers Surg Med 2014;46:203–15.Google Scholar

  • [20]

    Chung S, Fried D, Staninec M, Darling CL. Multispectral near-IR reflectance and transillumination imaging of teeth. Biomed Opt Express 2011;2:2804–14.Google Scholar

  • [21]

    Usenik P, Bürmen M, Vrtovec T, Fidler A, Pernuš F, Likar B. Automated classification and visualization of healthy and pathological dental tissues based on near-infrared hyper-spectral imaging. InMedical Imaging 2011: Computer-Aided Diagnosis 2011 Mar 9 (Vol. 7963, p. 796340). International Society for Optics and Photonics.Google Scholar

  • [22]

    Salsone S, Taylor A, Gomez J, Pretty I, Ellwood R, Dickinson M, et al. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification. J Biomed Opt 2012;17:76009.Google Scholar

  • [23]

    Mohanty B, Dadlani D, Mahoney D, Mann AB. Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy. Caries Res 2013;47:27–33.Google Scholar

  • [24]

    Beier BD, Quivey RG, Berger AJ. Identification of different bacterial species in biofilms using confocal Raman microscopy. J Biomed Opt 2010;15:66001.Google Scholar

  • [25]

    Burkhardt A, Kirsten L, Bornitz M, Zahnert T, Koch E. Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography. J Biophotonics 2014;7:434–41.Google Scholar

  • [26]

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–82.Google Scholar

  • [27]

    Tetschke F, Markgraf W, Gransow M, Koch S, Thiele C, Kulcke A, et al. Hyperspectral imaging for monitoring oxygen saturation levels during normothermic kidney perfusion. J Sensors Sens Syst 2016;5:313–8.Google Scholar

  • [28]

    Galli R, Uckermann O, Winterhalder MJ, Sitoci-Ficici KH, Geiger KD, Koch E, et al. Vibrational spectroscopic imaging and multiphoton microscopy of spinal cord injury. Anal Chem 2012;84:8707–14.Google Scholar

  • [29]

    Espigares J, Sadr A, Hamba H, Shimada Y, Otsuki M, Tagami J, et al. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography. J Med Imaging (Bellingham) 2015;2:14001.Google Scholar

  • [30]

    Popescu DP, Sowa MG, Hewko MD, Choo-Smith L-P. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images. J Biomed Opt 2008;13:54053.Google Scholar

  • [31]

    van der Veen MH. Detecting short-term changes in the activity of caries lesions with the aid of new technologies. Curr Oral Heal Rep 2015;2:102–9.Google Scholar

  • [32]

    Karlsson L. Caries detection methods based on changes in optical properties between healthy and carious tissue. Int J Dent 2010;2010:270729.Google Scholar

  • [33]

    Buchalla W. Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions. Caries Res 2005;39:150–6.Google Scholar

  • [34]

    Koenig K, Schneckenburger H. Laser-induced autofluorescence for medical diagnosis. J Fluoresc 1994;4:17–40.Google Scholar

  • [35]

    Almaz EC, Simon JC, Fried D, Darling CL. Influence of stains on lesion contrast in the pits and fissures of tooth occlusal surfaces from 800–1600-nm. InLasers in Dentistry XXII 2016 Feb 29 (Vol. 9692, p. 96920X). International Society for Optics and Photonics.Google Scholar

  • [36]

    Buchalla W, Attin T, Niedmann Y, Niedmann P, Lennon ÁM. Porphyrins are the cause of red fluorescence of carious dentine: verified by gradient reversed-phase HPLC. Caries Res 2008;42:223.Google Scholar

  • [37]

    Usenik P, Bürmen M, Fidler A, Pernuš F, Likar B. Evaluation of cross-polarized near infrared hyperspectral imaging for early detection of dental caries. Proc SPIE 2012;8208:82080G–82080G–7.Google Scholar

  • [38]

    Jones R, Fried D. Attenuation of 1310- and 1550-nm laser light through sound dental enamel. Proc SPIE 2002;4610:187–90.Google Scholar

  • [39]

    Usenik P, Bürmen M, Fidler A, Pernus F, Likar B. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries. J Dent 2014;42:1242–7.Google Scholar

  • [40]

    Almahdy A, Downey FC, Sauro S, Cook RJ, Sherriff M, Richards D, et al. Microbiochemical analysis of carious dentine using Raman and fluorescence spectroscopy. Caries Res 2012;46:432–40.Google Scholar

  • [41]

    Wang J, Zheng W, Lin K, Huang Z. Development of a hybrid Raman spectroscopy and optical coherence tomography technique for real-time in vivo tissue measurements. Opt Lett 2016;41:3045.Google Scholar

  • [42]

    Patil CA, Kalkman J, Faber DJ, Nyman JS, van Leeuwen TG, Mahadevan-Jansen A. Integrated system for combined Raman spectroscopy-spectral domain optical coherence tomography. J Biomed Opt 2011;16:1–10.Google Scholar

About the article

Received: 2017-08-10

Accepted: 2018-07-18

Published Online: 2018-08-25

Published in Print: 2018-10-25


Research funding: This project is supported by the European Union/European Social Fund (ESF) and the Free State of Saxony within the ESF junior research group “Optical Technologies in Medicine” (Funder Id: 10.13039/501100004895, project number 100270108) and within a doctoral scholarship (project number 100284305).

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animal use.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 5, Pages 595–602, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0133.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in