Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Volume 63, Issue 5


Volume 57 (2012)

Algorithms for mapping kidney tissue oxygenation during normothermic machine perfusion using hyperspectral imaging

Wenke Markgraf
  • Corresponding author
  • Institute of Biomedical Engineering, Technische Universität Dresden, 01307 Dresden, Germany, Phone: +49 351 463-33392, Fax: +49 351 463-36026
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philipp Feistel / Christine Thiele / Hagen Malberg
Published Online: 2018-09-15 | DOI: https://doi.org/10.1515/bmt-2017-0216


The lack of donor grafts is a severe problem in transplantation medicine. Hence, the improved preservation of existing and the usage of organs that were deemed untransplantable is as urgent as ever. The development of novel preservation techniques has come into focus. A promising alternative to traditional cold storage is normothermic machine perfusion (NMP), which provides the benefit of improving the organs’ viability and of assessing the organs’ status under physiological conditions. For this purpose, methods for evaluating organ parameters have yet to be developed. In a previous study, we determined the tissue oxygen saturation (StO2) of kidneys during NMP with hyperspectral imaging (HSI) based on a discrete wavelength (DW) algorithm. The aim of the current study was to identify a more accurate algorithm for StO2 calculation. A literature search revealed three candidates to test: a DW algorithm and two full spectral algorithms – area under a curve and partial least square regression (PLSR). After obtaining suitable calibration data to train each algorithm, they were evaluated during NMP. The wavelength range from 590 to 800 nm was found to be appropriate for analyzing StO2 of kidneys during NMP. The PLSR method shows good results in analyzing the tissues’ oxygen status in perfusion experiments.

Keywords: discrete wavelength method; hyperspectral imaging; oxygen saturation; partial least square regression; tissue parameters


  • [1]

    Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc 2008;40:34–8.Web of SciencePubMedCrossrefGoogle Scholar

  • [2]

    Branger P, Samuel U. Annual report 2016. Eurotransplant International Foundation 2015; ISBN-EAN: 978-90-71658-35–8.Google Scholar

  • [3]

    Abouna GM. The use of marginal-suboptimal donor organs: a practical solution for organ shortage. Ann Transplant 2004;9:62–6.PubMedGoogle Scholar

  • [4]

    Ojo AO, Hanson JA, Meier-Kriesche H, Okechukwu CN, Wolfe RA, Leichtman AB, et al. Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates. J Am Soc Nephrol 2001;12:589–97.PubMedGoogle Scholar

  • [5]

    Port FK, Bragg JL, Metzger RA, Dykstra DM, Gillespie BW, Young EW, et al. Donor characteristics associated with reduced graft survival: an approach to expanding the pool of kidney donors. Transplantation 2002;74:1281–6.PubMedCrossrefGoogle Scholar

  • [6]

    Saidi RF, Elias N, Kawai T, Hertl M, Farrell ML, Goes N, et al. Outcome of kidney transplantation using expanded criteria donors and donation after cardiac death kidneys: realities and costs. Am J Transplant 2007;7:2769–74.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [7]

    Snoeijs MG, Winkens B, Heemskerk MB, Hoitsma AJ, Christiaans MH, Buurman WA, et al. Kidney transplantation from donors after cardiac death: a 25-year experience. Transplantation 2010;90:1106–12.CrossrefWeb of SciencePubMedGoogle Scholar

  • [8]

    Kaths JM, Spetzler VN, Goldaracena N, Echeverri J, Louis KS, Foltys DB, et al. Normothermic ex vivo kidney perfusion for the preservation of kidney grafts prior to transplantation. J Vis Exp 2015;101:e52909.Web of ScienceGoogle Scholar

  • [9]

    Koch S, Gransow M, Tetschke F, Malberg H. Impact of cold ischemia on the autoregulation during normothermic extracorporeal kidney perfusion. Transplant Int 2014;27:45.Google Scholar

  • [10]

    Gransow M, Koch S, Tetschke F, Aschenbrenner U, Thiele C, Malberg H, et al. Prozessanalyse zur Ex-vivo Nierenperfusion – Fokus: Autoregulation [Process Analysis of Ex-Vivo Kidney Perfusion – Focus: Autoregulation]. Automatisierungstechnik 2015;63:23–31.Google Scholar

  • [11]

    Markgraf W, Gransow M, Tetschke F, Thiele C. A new automated kidney perfusion system: maintaining physiological conditions and monitoring organ function. Transplant Int 2015;28:3.Google Scholar

  • [12]

    Hosgood SA, Barlow AD, Hunter JP, Nicholson ML. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. BJS 2015;102:1433–40.CrossrefGoogle Scholar

  • [13]

    Singh P, Ricksten SE, Bragadottir G, Redfors B, Nordquist L. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 2013;40:138–47.Web of ScienceCrossrefPubMedGoogle Scholar

  • [14]

    Hyttel-Sorensen S, Witzner Hessel T, Greisen G. Peripheral tissue oximetry: comparing three commercial nearinfrared spectroscopy oximeters on the forearm. J Clin Monit Comput 2014;28:149–55.CrossrefGoogle Scholar

  • [15]

    Nitzan M, Romem A, Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl) 2014;7:231–9.PubMedGoogle Scholar

  • [16]

    DeGraff BA, Demas JN. Luminescence-based oxygen sensors. In: Geddes CD, Lakowicz JR (Eds.) Reviews in Fluorescence. Massachusetts: Springer; 2005.Google Scholar

  • [17]

    Lu G, Fei B. Medical hyperspectral imaging: a review. Biomed Opt 2014;19:010901.CrossrefGoogle Scholar

  • [18]

    Best SL, Thapa A, Jackson N, Olweny E, Holzer M, Park S, et al. Renal oxygenation measurement during partial nephrectomy using hyperspectral imaging may predict acute postoperative renal function. J Endourol 2013;27:1037–40.Web of ScienceCrossrefPubMedGoogle Scholar

  • [19]

    Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 2003;103:577−644.CrossrefPubMedGoogle Scholar

  • [20]

    Prahl S. Optical Absorption of Hemoglobin; 1999, http://omlc.ogi.edu/spectra/hemoglobin/ (12.06.2017).

  • [21]

    Khoobehi B, Beach JM, Kawano H. Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head. Invest Ophthalmol Vis Sci 2004;45:1464–72.CrossrefPubMedGoogle Scholar

  • [22]

    Tetschke F, Markgraf W, Gransow M, Koch S, Thiele C, Kulcke A, et al. Hyperspectral imaging for monitoring oxygen saturation levels during normothermic kidney perfusion. J Sens Syst 2016;5:313–8.Web of ScienceCrossrefGoogle Scholar

  • [23]

    Holmer A, Tetschke F, Marotz J, Malberg H, Markgraf W, Thiele C, et al. Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas 2016;37:2064–78.Web of ScienceCrossrefPubMedGoogle Scholar

  • [24]

    Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964;36:1627–39.CrossrefGoogle Scholar

  • [25]

    Teng Y, Ding H, Gong Q, Jia Z, Huang L. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate. J Biomed Opt 2006;11:024016.CrossrefPubMedGoogle Scholar

  • [26]

    Crittin M, Schmidt H, Riva CE. Hemoglobin oxygen saturation (So2) in the human ocular fundus measured by reflectance oximetry: preliminary data in retinal veins. Klin Monatsbl Augenheilkd 2002;219:289–91.CrossrefGoogle Scholar

  • [27]

    Narasimha-Iyer H, Beach JM, Khoobehi B, Ning J, Kawano H, Roysam, B. Algorithms for automated oximetry along the retinal vascular tree from dual-wavelength fundus images. J Biomed Opt 2005;10:054013.PubMedCrossrefGoogle Scholar

  • [28]

    Kim JG, Zhao D, Song Y, Constantinescu A, Mason RP, Liu H. Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. J Biomed Opt 2003;8:53–62.PubMedCrossrefGoogle Scholar

  • [29]

    Shao J, Lin L. Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy. Opt Eng 2001;40:2293–301.CrossrefGoogle Scholar

  • [30]

    Lynch JM, Buckley EM, Schwab PJ, Busch DR, Hanna BD, Putt ME, et al. Noninvasive optical quantification of cerebral venous oxygen saturation in humans. Acad Radiol 2014;21:162–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • [31]

    Huang J, Zhang S, Gnyawali S, Sen CK, Xu RX. Second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygenation. J Biomed Opt 2015;20:036001.Web of ScienceCrossrefPubMedGoogle Scholar

  • [32]

    Franceschini MA, Boas DA, Zourabian A, Diamond SG, Nadgir S, Lin DW, et al. Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects. J Appl Physiol 2002;92:372–84.CrossrefPubMedGoogle Scholar

  • [33]

    Beach J, Ning J, Khoobehi B. Oxygen saturation in optic nerve head structures by hyperspectral image analysis. Curr Eye Res 2007;32:161–70.Web of ScienceCrossrefPubMedGoogle Scholar

  • [34]

    Chen P, Fernald B, Lin W. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm. Phys Med Biol 2011;56:3985–4000.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [35]

    Zuzak KJ, Schaeberle MD, Lewis EN, Levin IW. Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion. Anal Chem 2002;74:2021–8.PubMedCrossrefGoogle Scholar

  • [36]

    Chen PC, Lin WC. Spectral-profile-based algorithm for hemoglobin oxygen saturation determination from diffuse reflectance spectra. Biomed Opt Express 2011;2:1082–96.Web of ScienceCrossrefPubMedGoogle Scholar

  • [37]

    Clancy NT, Arya S, Stoyanov D, Singh M, Hanna GB, Elson DS. Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope. Biomed Opt Express 2015;6:4179–90.Web of ScienceCrossrefPubMedGoogle Scholar

  • [38]

    Gillies R, Freeman JE, Cancio LC, Brand D, Hopmeier M, Mansfield JR. Systemic effects of shock and resuscitation monitored by visible hyperspectral imaging. Diabetes Technol Ther 2003;5:847–55.PubMedCrossrefGoogle Scholar

  • [39]

    Miclos S, Parasca SV, Calin MA, Savastru D, Manea D. Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging. Biomed Opt Express 2015;6:3420–30.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [40]

    Mori M, Chiba T, Nakamizo A, Kumashiro R, Murata M, Akahoshi T, et al. Intraoperative visualization of cerebral oxygenation using hyperspectral image data: a two-dimensional mapping method. Int J Comput Assist Radiol Surg 2014;9:1059–72.CrossrefWeb of ScienceGoogle Scholar

  • [41]

    Styp-Rekowska B, Disassa NM, Reglin B, Ulm L, Kuppe H, Secomb TW, et al. An imaging spectroscopy approach for measurement of oxygen saturation and hematocrit during intravital microscopy. Microcirculation 2007;14:207–21.Web of SciencePubMedCrossrefGoogle Scholar

  • [42]

    Zuzak KJ, Francis RP, Wehner EF, Litorja M, Cadeddu JA, Livingston EH. Active DLP hyperspectral illumination: a noninvasive, in vivo, system characterization visualizing tissue oxygenation at near video rates. Anal Chem 2011;7424–30.PubMedWeb of ScienceGoogle Scholar

  • [43]

    Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J Biomed Opt 2005;10:44004.CrossrefPubMedGoogle Scholar

  • [44]

    Giovannetti R. The use of spectrophotometry UV-Vis for the study of porphyrins. In: Uddin J (Ed.) Nanotechnology and Nanomaterials, Macro to Nano Spectroscopy. Rijeka, Croatia: InTech; 2012, pp. 87–108.Google Scholar

  • [45]

    Eichler J, Knof J, Lenz H. Measurements on the depth of penetration of light (0.35–1.0 microgram) in tissue. Radiat Environ Biophys 1977;14:239–42.CrossrefPubMedGoogle Scholar

  • [46]

    Soltoff SP. ATP and the regulation of renal cell function. Annu Rev Physiol 1986;48:9–31.PubMedCrossrefGoogle Scholar

  • [47]

    Simmons MN, Schreiber MJ, Gill IS. Surgical renal ischemia: a contemporary overview. J Urol 2008;180:19–30.Web of ScienceCrossrefPubMedGoogle Scholar

About the article

Received: 2017-11-28

Accepted: 2018-09-04

Published Online: 2018-09-15

Published in Print: 2018-10-25

Author Statement

Research funding: Authors state no funding involved.

Conflicts of interest: The authors declare no conflicts of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The research related to the animal use complies with all the relevant national regulations and institutional policies.

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 5, Pages 557–566, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0216.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in