Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 5

Issues

Volume 57 (2012)

Intraoperative mapping of the sensory cortex by time-resolved thermal imaging

Nico Hoffmann
  • Corresponding author
  • Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Anästhesiologie und Intensivtherapie, Klinisches Sensoring und Monitoring, Fetscherstraße 74,D-01062 Dresden, Germany, Phone: +49 351 458 16137, Fax: +49 351 458 6325
  • Angewandte Wissensverarbeitung, Fakultät Informatik, Technische Universität Dresden, Dresden, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yordan Radev
  • Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edmund Koch
  • Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Anästhesiologie und Intensivtherapie, Klinisches Sensoring und Monitoring, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Uwe Petersohn
  • Angewandte Wissensverarbeitung, Fakultät Informatik, Technische Universität Dresden, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerald Steiner
  • Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Anästhesiologie und Intensivtherapie, Klinisches Sensoring und Monitoring, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Kirsch
  • Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
  • CRTD/DFG-Forschungszentrum für Regenerative Therapien Dresden, Technische Universität Dresden, Dresden, Germany
  • Nationales Centrum für Tumorerkrankungen (NCT), Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-29 | DOI: https://doi.org/10.1515/bmt-2017-0229

Abstract

The resection of brain tumor requires a precise distinction between eloquent areas of the brain and pathological tumor tissue in order to improve the extent of resection as well as the patient’s progression free survival time. In this study, we discuss mathematical tools necessary to recognize neural activity using thermal imaging cameras. The main contribution to thermal radiation of the exposed human cortex is regional cerebral blood flow (CBF). In fact, neurovascular coupling links neural activity to changes in regional CBF which in turn affects the cortical temperature. We propose a statistically sound framework to visualize neural activity of the primary somatosensory cortex. The framework incorporates a priori known experimental conditions such as the thermal response to neural activity as well as unrelated effects induced by random neural activity and autoregulation. These experimental conditions can be adopted to certain electrical stimulation protocols so that the framework allows to unveil arbitrary evoked neural activity. The method was applied to semisynthetic as well as two intraoperative cases with promising results as we were able to map the eloquent sensory cortex with high sensitivity. Furthermore, the results were validated by anatomical localization and electrophysiological measurements.

Keywords: functional mapping; neurosurgery; penalized splines; statistical data analysis

References

  • [1]

    Ottenhausen M, Krieg SM, Meyer B, Ringel F. Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 2015;38:1–13.Google Scholar

  • [2]

    Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Okada Y. Intraoperative functional mapping and monitoring during glioma surgery. Neurol Med Chir 2015;55:1–13.Google Scholar

  • [3]

    De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 2012;30:2559–65.Google Scholar

  • [4]

    Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, et al. Functional mapping? Guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. J Neurosurg 2011;114:566–73.Google Scholar

  • [5]

    Cedzich C, Taniguchi M, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 1996;38:962–70.Google Scholar

  • [6]

    Morone KA, Neimat JS, Roe AW, Friedman RM. Review of functional and clinical relevance of intrinsic signal optical imaging in human brain mapping. Neurophotonics 2017;4:031220-1.Google Scholar

  • [7]

    Meyer T, Sobottka SB, Kirsch M, Schackert G, Steinmeier R, Koch E, et al. Intraoperative optical imaging of functional brain areas for improved image-guided surgery. Biomed Tech 2013;58:225–36.Google Scholar

  • [8]

    Shevelev IA, Tsicalov EN, Gorbach AM, Budko KP, Sharaev GA. Thermoimaging of the brain. J Neurosci Methods 1993;46: 49–9.Google Scholar

  • [9]

    Suzuki T, Ooi Y, Seki J. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation. J Appl Physiol 2012;112:1215–22.Google Scholar

  • [10]

    Gorbach AM, Heiss J, Kufta C, Sato S, Fedio P, Kammerer WA, et al. Intraoperative infrared functional imaging of human brain. Ann Neurol 2003;54:297–309.Google Scholar

  • [11]

    Parrish T, Iorga M. Application of IR thermometry to understanding brain function. Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV 2018; 1054002-1.Google Scholar

  • [12]

    Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. New York: Cambridge University Press; 2003.Google Scholar

  • [13]

    DeBoor C. A Practical Guide to Splines. New York: Springer-Verlag; 1978.Google Scholar

  • [14]

    Eilers PH, Currie ID, Durbán M. Fast and compact smoothing on large multidimensional grids. Comput Stat Data Anal 2006;50:61–76.Google Scholar

About the article

Received: 2017-12-13

Accepted: 2018-08-30

Published Online: 2018-09-29

Published in Print: 2018-10-25


Author Statement

Research funding: This work was supported by the European Social Fund (project no. 100270108) and the Saxonian Ministry of Science and Art.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 5, Pages 567–572, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0229.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in