Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 6

Issues

Volume 57 (2012)

Sensitivity enhancement of a folded beam MEMS capacitive accelerometer-based microphone for fully implantable hearing application

Apoorva Dwivedi
  • Corresponding author
  • Electronics and Communications Engineering Department, NIT Hamirpur, Hamirpur 177005, Himachal Pradesh, India, Phone: +91-7831059900, Fax: 01972-223834
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gargi Khanna
  • Electronics and Communications Engineering Department, NIT Hamirpur, Hamirpur 177005, Himachal Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-31 | DOI: https://doi.org/10.1515/bmt-2016-0181

Abstract

The present work attempts to enhance the sensitivity of a folded beam microelectromechanical systems (MEMS) capacitive accelerometer by optimising the device geometry. The accelerometer is intended to serve as a microphone in the fully implantable hearing application which can be surgically implanted in the middle ear bone structure. For the efficient design of the accelerometer as a fully implantable biomedical device, the design parameters such as size, weight and resonant frequency have been considered. The geometrical parameters are varied to obtain the optimum sensitivity considering the design constraints and the stability of the structure. The optimised design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The stability of the device is ensured using eigenfrequency analysis. Optimised results of the device geometry are presented and discussed. The accelerometer has a sensing area of 1 mm2 and attains a nominal capacitance of 5.3 pF and an optimum sensitivity of 6.89 fF.

Keywords: accelerometer; hearing aid; hearing impairment; implantable; microelectromechanical system (MEMS); middle ear implant

References

  • [1]

    Briggs RJ, Eder HC, Seligman PM, et al. Initial clinical experience with a totally implantable cochlear implant research device. Otol Neurotol 2008; 29: 114–119.Google Scholar

  • [2]

    Bruschini L, Forli F, Santoro A, Bruschini P, Berrettini S. Fully implantable Otologics MET Carina™ device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results. Acta Otorhinolaryngol Ital 2009; 29: 79–85.Google Scholar

  • [3]

    Federspil PA, Plinkert PK. Restoring hearing with active hearing implants/Wiederherstellung des Gehörs mit aktiven Hörimplantaten. Biomed Tech 2004; 49: 78–82.Google Scholar

  • [4]

    Gan RZ, Wood MW, Dormer KJ. Human middle ear transfer function measured by double laser interferometry system. Otol Neurotol 2004; 25: 423–435.Google Scholar

  • [5]

    Goode RL, Ball G, Nishihara S. Measurement of umbo vibration in human subjects-method and possible clinical applications. Otol Neurotol 1993; 14: 247–251.Google Scholar

  • [6]

    Häusler R, Stieger C, Bernhard H, Kompis M. A novel implantable hearing system with direct acoustic cochlear stimulation. Audiol Neurotol 2008; 13: 247–256.Google Scholar

  • [7]

    Haynes DS, Young JA, Wanna GB, Glasscock III ME. Middle ear implantable hearing devices: an overview. Trends Amplif 2009; 13: 206–214.Google Scholar

  • [8]

    Kim MK, Yoon YH, Park IY, Cho JH. Design of differential electromagnetic transducer for implantable middle ear hearing device using finite element method. Sens Actuators A Phys 2006; 130: 234–240.Google Scholar

  • [9]

    Ko WH, Zhu WL, Kane M, Maniglia AJ. Engineering principles applied to implantable otologic devices. Otolaryng Clin N Am 2001; 34: 299–314.Google Scholar

  • [10]

    Ko WH, Zhang R, Huang P, et al. Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Trans Biomed Circuits Syst 2009; 3: 277–285.Google Scholar

  • [11]

    Koch M, Eßinger TM, Stoppe T, Lasurashvili N, Bornitz M, Zahnert T. Fully implantable hearing aid in the incudostapedial joint gap. Hear Res 2016; 340: 169–178.Google Scholar

  • [12]

    Kraus EM, Shohet JA, Catalano PJ. Envoy Esteem totally implantable hearing system: phase 2 trial, 1-year hearing results. Otolaryngol Head Neck Surg 2011; 145: 100–109.Google Scholar

  • [13]

    Leysieffer H, Baumann JW, Mayer R, et al. A totally implantable hearing aid for inner ear deafness: TICA LZ 3001. HNO 1998; 46: 853–863.Google Scholar

  • [14]

    Maniglia AJ, Murray G, Arnold JE, Ko WH. Bioelectronic microphone options for a totally implantable hearing device for partial and total hearing loss. Otolaryngol Clin North Am 2001; 34: 469–483.Google Scholar

  • [15]

    Memari F, Asghari A, Daneshi A, Jalali A. Safety and patient selection of totally implantable hearing aid surgery: Envoy system, Esteem. Eur Arch Otorhinolaryngol 2011; 268: 1421–1425.Google Scholar

  • [16]

    Park S, Lee KC. Design and analysis of a microelectromagnetic vibration transducer used as an implantable middle ear hearing aid. J Micromech Microeng 2002; 12: 505.Google Scholar

  • [17]

    Park WT, O’Connor KN, Chen KL, et al. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomed Microdevices 2007; 9: 939–949.Google Scholar

  • [18]

    Pulcherio JO, Bittencourt AG, Burke PR, et al. Carina® and Esteem®: a systematic review of fully implantable hearing devices. PLoS One 2014; 9: e110636.Google Scholar

  • [19]

    Rosowski JJ, Davis PJ, Donahue KM, Merchant SN, Coltrera MD. Cadaver middle ears as models for living ears: comparisons of middle ear input immittance. Ann Otol Rhinol Laryngol 1990; 99: 403–412.Google Scholar

  • [20]

    Urquiza R, López J, Gonzalez-Herrera A, Povedano V, Ciges M. Tympanic-ossicular prostheses and MEMS technology: whats and whys. Acta Oto-laryngol 2009; 129: 411–415.Google Scholar

  • [21]

    Uziel A, Mondain M, Hagen P, Dejean F, Doucet G. Rehabilitation for high-frequency sensorineural hearing impairment in adults with the Symphonix Vibrant Soundbridge: a comparative study. Otol Neurotol 2003; 24: 775–783.Google Scholar

  • [22]

    Varshney S. Deafness in India. Indian J Otol 2016; 22: 73.Google Scholar

  • [23]

    Voss SE, Rosowski JJ, Merchant SN, Peake WT. Acoustic responses of the human middle ear. Hearing Res 2000; 150: 43–69.Google Scholar

  • [24]

    Wai-Chi W, Azid AA, Majlis BY. Formulation of stiffness constant and effective mass for a folded beam. Arch Mech 2010; 62: 405–418.Google Scholar

  • [25]

    Whittemore KR, Merchant SN, Poon BB, Rosowski JJ. A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hearing Res 2004; 187: 85–104.Google Scholar

  • [26]

    Woo ST, Shin DH, Lim HG, et al. A new trans-tympanic microphone approach for fully implantable hearing devices. Sensors 2015; 15: 22798–22810.Google Scholar

  • [27]

    World Health Organization. Deafness and Hearing Loss – Fact Sheet N0300; Geneva, Switzerland: WHO Media Centre. March 2015.Google Scholar

  • [28]

    Yip M, Jin R, Nakajima HH, Stankovic KM, Chandrakasan AP. A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J Solid-State Circuits 2015; 50: 214–229.Google Scholar

  • [29]

    Young DJ, Zurcher MA, Semaan M, Megerian CA, Ko WH. MEMS capacitive accelerometer-based middle ear microphone. IEEE Trans Biomed Eng 2012; 59: 3283–3292.Google Scholar

  • [30]

    Zeng F-G, Rebscher S, Harrision W, Sun X, Feng H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 2008; 1: 115–142.Google Scholar

  • [31]

    Zenner HP, Leysieffer H. Total implantation of the implex TICA hearing amplifier implant for high-frequency sensorineural hearing loss: the Tubingen University experience. Otolaryng Clin N Am 2001; 34: 417–446.Google Scholar

  • [32]

    Zenner HP, Baumann JW, Reischl G, et al. Patient selection for incus body coupling of a totally implantable middle ear implant. Acta Oto-laryngol 2003; 123: 683–696.Google Scholar

  • [33]

    Zurcher MA, Semaan M, Megerian CA, Ko WH, Young DJ. A MEMS capacitive accelerometer design as middle ear microphone based on ossicular chain micromechanic characterization at umbo for fully implantable cochlear prosthesis. Sensors Materials 2010; 22: 297–312.Google Scholar

About the article

Received: 2016-09-09

Accepted: 2017-08-17

Published Online: 2017-10-31

Published in Print: 2018-11-27


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 6, Pages 699–708, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0181.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in