Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 6

Issues

Volume 57 (2012)

Assessing regional lung mechanics by combining electrical impedance tomography and forced oscillation technique

Chuong Ngo
  • Corresponding author
  • Philips Chair of Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sarah Spagnesi
  • Philips Chair of Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos Munoz
  • Philips Chair of Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sylvia Lehmann
  • Department of Pediatric Pulmonology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Vollmer / Berno Misgeld
  • Philips Chair of Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Steffen Leonhardt
  • Philips Chair of Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-29 | DOI: https://doi.org/10.1515/bmt-2016-0196

Abstract

There is a lack of noninvasive pulmonary function tests which can assess regional information of the lungs. Electrical impedance tomography (EIT) is a radiation-free, non-invasive real-time imaging that provides regional information of ventilation volume regarding the measurement of electrical impedance distribution. Forced oscillation technique (FOT) is a pulmonary function test which is based on the measurement of respiratory mechanical impedance over a frequency range. In this article, we introduce a new measurement approach by combining FOT and EIT, named the oscillatory electrical impedance tomography (oEIT). Our oEIT measurement system consists of a valve-based FOT device, an EIT device, pressure and flow sensors, and a computer fusing the data streams. Measurements were performed on five healthy volunteers at the frequencies 3, 4, 5, 6, 7, 8, 10, 15, and 20 Hz. The measurements suggest that the combination of FOT and EIT is a promising approach. High frequency responses are visible in the derivative of the global impedance index ΔZeit(t,fos). The oEIT signals consist of three main components: forced oscillation, spontaneous breathing, and heart activity. The amplitude of the oscillation component decreases with increasing frequency. The band-pass filtered oEIT signal might be a new tool in regional lung function diagnostics, since local responses to high frequency perturbation could be distinguished between different lung regions.

Keywords: electrical impedance tomography; forced oscillation technique; oEIT; pulmonary function test; regional lung mechanics

References

  • [1]

    Adler A, Amyot R, Guardo R, Bates JHT, Berthiaume Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 1997; 83: 1762–1767.Google Scholar

  • [2]

    Bates JH, Irvin CG, Farré R, Hantos Z. Oscillation mechanics of the respiratory system. Compr Physiol 2011; 1: 1233.Google Scholar

  • [3]

    Campbell JH, Harris ND, Zhang F, Brown BH, Morice AH. Clinical applications of electrical impedance tomography in the monitoring of changes in intrathoracic fluid volumes. Physiol Meas 1994; 15: A217.Google Scholar

  • [4]

    Dreyer W, Müller I, Strehlow P. A study of equilibria of interconnected balloons. Q J Mech Appl Math 1982; 35: 419–440.Google Scholar

  • [5]

    DuBois A, Brody A, Lewis D, Burgess B. Oscillation mechanics of lungs and chest in man. J Appl Physiol 1956; 8: 587–594.Google Scholar

  • [6]

    Elad D, Shochat A, Shiner RJ. Computational model of oscillatory airflow in a bronchial bifurcation. Respir Physiol 1998; 112: 95–111.Google Scholar

  • [7]

    Frerichs I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 2000; 21: R1.Google Scholar

  • [8]

    Frerichs I, Golisch W, Hahn G, Michael K, Burchardi H, Hellige G. Heterogeneous distribution of pulmonary ventilation in intensive care patients detected by functional electrical impedance tomography. J Intensive Care Med 1998; 13: 168–173.Google Scholar

  • [9]

    Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC. Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 2003; 29: 2312–2316.Google Scholar

  • [10]

    Frerichs I, Pulletz S, Elke G, Gawelczyk B, Frerichs A, Weiler N. Patient examinations using electrical impedance tomography—sources of interference in the intensive care unit. Physiol Meas 2011; 32: L1.Google Scholar

  • [11]

    Frerichs I, Zhao Z, Becher T, Zabel P, Weiler N, Vogt B. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas 2016; 37: 698.Google Scholar

  • [12]

    Gracia J, Seppä V, Viik J. Regional impedance pneumography heterogeneity during airway opening pressure chirp oscillations. Int J Bioelectromagn 2015; 17: 42–51.Google Scholar

  • [13]

    Harris ND, Suggett AJ, Barber DC, Brown BH. Applied potential tomography: a new technique for monitoring pulmonary function. Clin Phys Physiol Meas 1988; 9: 79.Google Scholar

  • [14]

    High KC, Ultman JS, Karl SR. Mechanically induced pendelluft flow in a model airway bifurcation during high frequency oscillation. J Biomech Eng 1991; 113: 342–347.Google Scholar

  • [15]

    Holder DS, Temple AJ. Effectiveness of the sheffield EIT system in distinguishing patients with pulmonary pathology from a series of normal subjects. In: Holder DS editor. Clinical and Physiological Applications of Electrical Impedance Tomography. London: UCL Press 1993: 277–298.Google Scholar

  • [16]

    Komarow HD, Myles IA, Uzzaman A, Metcalfe DD. Impulse oscillometry in the evaluation of diseases of the airways in children. Ann Allergy Asthma Immunol 2011; 106: 191–199.Google Scholar

  • [17]

    Lehmann S, Leonhardt S, Ngo C, et al. Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury. Clin Respir J 2016. doi: 10.1111/crj.12481. [Epub ahead of print].Google Scholar

  • [18]

    Lehmann S, Leonhardt S, Ngo C, et al. Global and regional lung function in cystic fibrosis measured by electrical impedance tomography. Pediatr Pulmonol 2016; 51: 1191–1199.Google Scholar

  • [19]

    Leonhardt S, Lachmann B. Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring? Intensive Care Med 2012; 38: 1917–1929.Google Scholar

  • [20]

    MacLeod D, Birch M. Respiratory impedance measurements: forced oscillation methods. Med Biol Eng Comput 2001; 39: 505–516.Google Scholar

  • [21]

    Marquis F, Coulombe N, Costa R, Gagnon H, Guardo R, Skrobik Y. Electrical impedance tomography’s correlation to lung volume is not influenced by anthropometric parameters. J Clin Monit Comput 2006; 20: 201–207.Google Scholar

  • [22]

    Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH. Changes in lung volume and ventilation during lung recruitment in high-frequency ventilated preterm infants with respiratory distress syndrome. J Pediatr 2011; 159: 199–205.Google Scholar

  • [23]

    Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH. Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants. Intensive Care Med 2012; 38: 294–299.Google Scholar

  • [24]

    Ngo C, Leonhardt S, Zhang T, et al. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers. Physiol Meas 2016; 38: 77.Google Scholar

  • [25]

    Ngo C, Krüger K, Vollmer T, et al. Effects of the nasal passage on forced oscillation lung function measurements. Biomed Tech (Berl) 2017. doi: 10.1515/bmt-2016-0158. [Epub ahead of print].Google Scholar

  • [26]

    Oczenski A, Oczenski W, Werba A, Andel H. Breathing and mechanical support: physiology of respiration and mechanical methods of artificial ventilation. Oxford: Blackwell Science 1997.Google Scholar

  • [27]

    Oostveen E, MacLeod D, Lorino H, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 2003; 22: 1026–1041.Google Scholar

  • [28]

    Otis A, McKerrow CB, Mead J, McIlroy MB, Selverstone NJ, Radford EP. Mechanial factors in distribution of pulmonary ventilation. J Appl Physiol 1956; 8: 427–443.Google Scholar

  • [29]

    Pikkemaat R, Tenbrock K, Lehmann S, Leonhardt S. Electrical impedance tomography: new diagnostic possibilities using regional time constant maps. Appl Cardiopulm Pathophysiol 2012; 16: 212–225.Google Scholar

  • [30]

    Pillow JJ, Frerichs I, Stocks J. Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol 2006; 41: 105–121.Google Scholar

  • [31]

    Seppä V, Viik J, Hyttinen J. Assessment of pulmonary flow using impedance pneumography. IEEE Trans Biomed Eng 2010; 57: 2277–2285.Google Scholar

  • [32]

    Smith H, Reinhold P, Goldman MD. Forced oscillation technique and impulse oscillometry. Eur Respir Monogr 2005; 31: 72–105.Google Scholar

  • [33]

    Vogt B, Pulletz S, Elke G, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol 2012; 113: 1154–1161.Google Scholar

  • [34]

    Vogt B, Zhao Z, Zabel P, Weiler N, Frerichs I. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 311: L8–L19.Google Scholar

  • [35]

    Wolf GK, Grychtol B, Frerichs I, Zurakowski D, Arnold JH. Regional lung volume changes during high-frequency oscillatory ventilation. Pediatr Crit Care Med 2010; 11: 610–615.Google Scholar

  • [36]

    Zhao Z, Fischer R, Frerichs I, Müller-Lisse U, Möller K. Regional ventilation in cystic fibrosis measured by electrical impedance tomography. J Cyst Fibros 2012; 11: 412–418.Google Scholar

  • [37]

    Zhao Z, Müller-Lisse U, Frerichs I, Fischer R, Möller K. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT. Physiol Meas 2013; 34:N107–N114.Google Scholar

About the article

Received: 2016-10-10

Accepted: 2017-07-17

Published Online: 2017-08-29

Published in Print: 2018-11-27


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 6, Pages 673–681, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0196.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chuong Ngo, Stephan Dahlmanns, Thomas Vollmer, Berno Misgeld, and Steffen Leonhardt
Computer Methods and Programs in Biomedicine, 2018
[2]
Chuong Ngo, Falk Dippel, Klaus Tenbrock, Steffen Leonhardt, and Sylvia Lehmann
Pediatric Pulmonology, 2018

Comments (0)

Please log in or register to comment.
Log in